<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>University’s Management</td>
<td>6</td>
</tr>
<tr>
<td>Universiti Teknikal Malaysia Melaka</td>
<td>7</td>
</tr>
<tr>
<td>- Vision, Mission and Motto</td>
<td></td>
</tr>
<tr>
<td>- General Educational Goals</td>
<td></td>
</tr>
<tr>
<td>Dean’s Welcoming Speech</td>
<td>9</td>
</tr>
<tr>
<td>Faculty’s Organisation Structure</td>
<td>11</td>
</tr>
<tr>
<td>Faculty at a Glance</td>
<td>12</td>
</tr>
<tr>
<td>Faculty’s Mission, Motto and Objectives</td>
<td>14</td>
</tr>
<tr>
<td>Curriculum Structures for Diploma and Bachelor Programmes</td>
<td>15</td>
</tr>
<tr>
<td>Admission Requirements</td>
<td>16</td>
</tr>
<tr>
<td>- Diploma Programme</td>
<td></td>
</tr>
<tr>
<td>- Bachelor Programme</td>
<td></td>
</tr>
<tr>
<td>Grading System</td>
<td>21</td>
</tr>
<tr>
<td>Graduation Requirements</td>
<td>22</td>
</tr>
<tr>
<td>Graduates’ Career Prospects</td>
<td>23</td>
</tr>
<tr>
<td>Soft Skills (KI)</td>
<td>24</td>
</tr>
<tr>
<td>Academic Advisory System</td>
<td>25</td>
</tr>
<tr>
<td>Lists of the Faculty’s External Examiner, Visiting Professor, and Adjunct Professor</td>
<td>26</td>
</tr>
</tbody>
</table>
DIPLOMA PROGRAMME

Programme Educational Objectives (PEO) – Diploma Programme
Programme Outcomes (PO) – Diploma Programme
Course Implementation - DEK
Curriculum Structure - DEK
Credit Hour and Pre-Requisite - DEK
Student Learning Time - DEK
Subject Details for Diploma Programme

BACHELOR PROGRAMME

Programme Educational Objectives (PEO) – Bachelor Programme
Programme Outcomes (PO) – Bachelor Programme

Bachelor of Electrical Engineering (Industrial Power) – BEKP
- Course Implementation - BEKP
- Curriculum Structure - BEKP
- Credit Hour and Pre-Requisite - BEKP
- Student Learning Time (SLT) - BEKP

Bachelor of Electrical Engineering (Control, Instrumentation & Automation) - BEKC
- Course Implementation - BEKC
- Curriculum Structure - BEKC
- Credit Hour and Pre-Requisite - BEKC
- Student Learning Time (SLT) - BEKC

Bachelor of Electrical Engineering (Power Electronics & Drives) - BEKE
- Course Implementation - BEKE
- Curriculum Structure - BEKE
- Credit Hour and Pre-Requisite - BEKE
- Student Learning Time (SLT) - BEKE

Bachelor of Mechatronics Engineering - BEKM
- Course Implementation - BEKM
- Curriculum Structure - BEKM
- Credit Hour and Pre-Requisite - BEKM
- Student Learning Time (SLT) - BEKM
Subject Details for Bachelor Programme

Information of Faculty’s Staff

Facilities & Infrastructure
- Faculty’s Building Map
- Laboratory Facilities
- List of Laboratories in the Faculty

Acknowledgement
VISION

To Be One of The World’s Leading Innovative and Creative Technical Universities

MISSION

To produce highly competent professionals through quality and world class technical university education based on application-oriented teaching, learning and research with smart university-industry partnership in line with national aspirations.

MOTTO

EXCELLENCE THROUGH COMPETENCY
1. To conduct academic and professional programmes based on relevant needs of the industries.

2. To produce graduates with relevant knowledge, technical competency, soft skills, social responsibility and accountability.

3. To cultivate scientific method, critical thinking, creative and innovative problem solving and autonomy in decision making amongst graduates.

4. To foster development and innovation activities in collaboration with industries for the development of national wealth.

5. To equip graduates with leadership and teamwork skills as well as develop communication and life-long learning skills.

6. To develop technopreneurship and managerial skills amongst graduates.

7. To instill an appreciation of the arts and cultural values and awareness of healthy life styles amongst graduates.
All praises is due Allah, the most Gracious, and with His Mercy the Academic Handbook of Diploma and Bachelor Degree for 2011/2012 session has been successfully published by the Faculty of Electrical Engineering.

First and foremost, I would like to honour this opportunity to congratulate all new students for being accepted to pursue their tertiary education in their selected courses in this faculty. I assure you that you are at the right place since that UTeM is the ultimate university where great technical career begins.

Students are the greatest asset for the faculty to achieve the main goal in producing graduates that will not only excel in academics, equipped with technical competencies and soft skills, but will be moulded to become “first class minded” as well. It is hoped that throughout their studies, students should integrate and practice as many soft skills, apply creative and critical thinking together with the leadership quality to work with colleagues for these are the qualities that will be the cutting edges to enter the world of occupation further on.

Beginning from July 2010, the faculty had implemented a new curriculum structure where all the activities related to teaching and learning are conducted based on the Outcome Based Education concept. These improvements are based on practice and application oriented as that meets the Engineering Accreditation Council requirement.

This handbook hence provides brief information about the faculty, curriculum structure, academic advisory system, university grading system and syllabus contents applicable to students for the 2011/2012 session intake. Hopefully it will provide appropriate information required and serves its purpose to constantly guide the students to plan their studies systematically to achieve academic excellence.
Last but not least, I would like to take this opportunity to express my gratitude to all the committee members that have involved in the publication of this handbook.

Wasalam.

“Excellence Through Competency”

Assoc Prof. Dr. Zulkifilie B. Ibrahim
Dean, Faculty of Electrical Engineering
Universiti Teknikal Malaysia Melaka
The Faculty of Electrical Engineering (FKE) was established in early 2001 and officially began its operation from the 22nd of June 2001 after obtaining authorization from Malaysia’s Ministry of Education (which is now known as Malaysia’s Ministry of Higher Learning). Initially, this Faculty began its operation in a temporary campus at Taman Tasik Utama, Ayer Keroh. In April 2005, the Faculty moved and operated entirely in the main campus located at Durian Tunggal, Melaka. This Faculty is one of the key academic units in Universiti Teknikal Malaysia Melaka (UTeM). It is led by a Dean, assisted by two Deputy Deans, five Head of Departments, a Chief Assistant Registrar and an Assistant Registrar. The combination of academic staff which consist of lecturers, teaching engineers and tutors based on their fields of expertise provide the main foundation in producing graduates equipped with knowledge, technical competencies as well as soft skills.

The Electrical Engineering Faculty consist of 4 Bachelor’s Degree programmes and 1 Diploma programme under these respective departments:
1. Department of Industrial Power Engineering
2. Department of Control, Instrumentation and Automation Engineering
3. Department of Power Electronic & Drives Engineering
4. Department of Mechatronics Engineering
5. Department of Diploma Studies

Beginning from the 2001/02 Academic Year, the Faculty of Electrical Engineering has offered the Bachelor of Electrical Engineering (Industrial Power) – BEKP programme. The following Academic Year, (2002/03), the Electrical Engineering Diploma – DEK programme is offered. After that, in the 2003/04 Academic Year, two more programmes were offered which are the Bachelor of Electrical Engineering (Control, Instrumentation & Automation) – BEKC programme and the Bachelor of Electrical Engineering (Power Electronic & Drives) – BEKE programme. Starting from the 2005/06 Academic Year, another programme was introduced which is the Bachelor of Mechatronics Engineering – BEKM.

The faculty also offers Post Graduate Programmes such as Masters of Science (M.Sc.) and Doctor of Philosophy (Ph.D) through research in various Electrical Engineering and Mechatronics Engineering fields. Both of these courses can be followed either by part-time or full-time. There are also 3 Post-Graduate programs for Masters of Electrical Engineering through mixed mode that have been approved starting from the 2009/2010 Academic Session. The programmes are:
1. Masters of Electrical Engineering (Industrial Power)
2. Masters of Electrical Engineering (Electronics Power & Drives)
3. Masters of Electrical Engineering (Control & Industrial Automations)
Apart from that, beginning from this 2011/2012 Academic Year, the Faculty is also offering an Engineering Doctorate Programme (EngD) in Electrical Engineering. The Engineering Doctorate programme offers an opportunity for outstanding engineers to enhance their qualification through a mix of broadly based technical and professional training while completing an industry based research project. Successful researchers will not only graduate with the title Doctor of Engineering (Electrical Engineering), but also will obtain the important mix of professional skills, technical knowledge and research experience that will enable them to progress to senior positions within the industry at an accelerated rate.
The Faculty’s mission is to provide quality technical education and professional services through broad-based knowledge, innovation and creativity based on expertise and latest technology in enhancing excellent work culture, mutual understanding and cooperation while upholding moral values in line with the national aspirations.

TOWARDS ACADEMIC EXCELLENCE

1. To conduct academic programs recognized by professional bodies that meet the global standards.
2. To produce competent and responsible professionals.
3. To provide balanced academic programs in terms of theory and practical based on Outcome Based Educations (OBE).
4. To enhance smart partnerships between the faculty with the industry through services, consultancies, and research activities.
5. To create a conducive teaching and learning environment.
6. To produce knowledgeable, outstanding visionary individuals instilled with moral values.
7. To promote a culture of publication amongst academics.
During the first year, the student will be equipped with fundamental subjects such as mathematics, science and computer programming to provide the foundation for learning engineering subjects. After that, during the second year, the student will be introduced to Electrical and Electronic Engineering subjects. At the end of this second year, students are required to undergo an Industrial Training for 10 weeks. Finally, during the third year, the students shall continue learning programme core subjects.

During the first year, the student will be introduced to fundamental subjects that would provide the basis of studying electrical engineering. This include, among others, subjects such as Algebra and Calculus, Engineering Mathematics, Electrical Circuit I and Computer Programming. Coming into the second year, the student will continue learning subjects that will further strengthen their basic electrical engineering knowledge. Student are required to undergo an internal industrial training during semester break after Semester 4 completed.

Beginning with the third year, the students will start to learn core programme courses such Control, Instrumentation & Automation Engineering, Industrial Power Engineering, Power Electronics & Drive Engineering or Mechatronics Engineering which include the areas of specialization. After Semester 6 has been completed student are required to undergo industrial training during the long semester break. During the fourth year, almost all the courses in this year are core programmes. In addition to this, the students are also required to undertake the Final Year Project for two semesters which should relate to the students field of study. Students are encouraged to do a project based on industrial problems that have been identified during their industrial training.

The University’s Compulsory subjects are distributed in each semester throughout the 4 years of study. Apart from core courses operated in the form of practice and application, students are also provided with engineering management skills, entrepreneurship, communication skills, co-curricular activities and personality development to produce engineers who are competent and able to work independently with a positive attitude.
ADMISSION REQUIREMENTS

MINIMUM REQUIREMENTS TO REGISTER IN DIPLOMA PROGRAMME

<table>
<thead>
<tr>
<th>FOR SPM HOLDERS</th>
</tr>
</thead>
</table>
| **General Requirements** | 1. Citizen of Malaysia; and
2. A pass in Sijil Pelajaran Malaysia or its equivalent with at least **FIVE (5)** credits including **Bahasa Melayu/Malaysia** |
| **Programme Specific Requirements** | 1. Fulfilled the Universities General Requirements with **FOUR (4)** credits (**Gred C**) in the following subjects:
- Mathematics
- Additional Mathematics
- Physics
And either one (1) of the following subjects:
- Additional Science/ Applied Science
- Science
- Chemistry
- Biology
- Engineering Technology
- Principle of Electrical and Electronic
- Application of Electrical and Electronic
- Engineering Technology or Mechanical or Electrical & Electronics Engineering Studies
- Electrical Automation and Diesel
- Computerize Machine
- Engineering Drawing
- Visual Arts or Invention and
2. A pass at least (**Gred E**) in English Language and
3. The applicant must not be colour blind or physically disabled such as to impair completing practical assignments. |
FOR DIPLOMA/EQUIVALENT HOLDERS

| Universities General Requirements | A pass in Sijil Pelajaran Malaysia (SPM) / equivalent with a credit in Bahasa Melayu/Bahasa Malaysia or Bahasa Melayu/Bahasa Malaysia July paper and A Diploma or other qualification recognised as equivalent by the Government of Malaysia and approved by the University’s Senate or A pass in Sijil Tinggi Persekolahan Malaysia (STPM) 2009/ previous examination with at least:
- C Grade (NGMP 2.00) in General Studies; and
- C Grade (NGMP 2.00) in two(2) other subjects or A pass in Matriculation 2009 or previous examination with at least a CGPA of 2.00 and Obtained at least Band 1 in the Malaysian University English Test (MUET). |

Note:

- A pass in Sijil Pelajaran Malaysia (SPM) / equivalent with a credit in Bahasa Melayu/Bahasa Malaysia or Bahasa Melayu/Bahasa Malaysia July paper and A Diploma or other qualification recognised as equivalent by the Government of Malaysia and approved by the University’s Senate or A pass in Sijil Tinggi Persekolahan Malaysia (STPM) 2009/ previous examination with at least:
 - C Grade (NGMP 2.00) in General Studies; and
 - C Grade (NGMP 2.00) in two(2) other subjects or A pass in Matriculation 2009 or previous examination with at least a CGPA of 2.00 and Obtained at least Band 1 in the Malaysian University English Test (MUET).
Programme Specific Requirements

<table>
<thead>
<tr>
<th>FOR DIPLOMA/EQUIVALENT HOLDERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A pass in Diploma with at least a CGPA of 3.00 in a related field from a recognised institution and approved by the University’s Senate; and</td>
</tr>
<tr>
<td>Credit exemption is subject to the discretion and approval by the Faculty and</td>
</tr>
<tr>
<td>Passed/ completed studies at Diploma level before the commencement of academic session or</td>
</tr>
<tr>
<td>A pass in Sijil Tinggi Persekolahan Malaysia (STPM) year 2009 or previous examination with at least C Grades (NGMP 2.00) in all of the following subjects:</td>
</tr>
<tr>
<td>• General Studies</td>
</tr>
<tr>
<td>• Physics /Biology</td>
</tr>
<tr>
<td>• Mathematics T/Further Mathematics T/ Mathematics S</td>
</tr>
<tr>
<td>• Chemistry</td>
</tr>
<tr>
<td>The applicant who did not take Physics at STPM level must has a pass in Sijil Pelajaran Malaysia (SPM)/ equivalent with at least 4B in Physics, or</td>
</tr>
<tr>
<td>A pass in MOE Matriculation/ UM Foundation/ UiTM Foundation year 2009 or previous examination with at least C Grades (NGMP 2.00) in all of the following subjects:</td>
</tr>
<tr>
<td>• Physics / Engineering Physics/Biology</td>
</tr>
<tr>
<td>• Mathematics T/Further Mathematics</td>
</tr>
<tr>
<td>• Chemistry / Engineering Chemistry</td>
</tr>
<tr>
<td>The applicant who did not take Physics at STPM level must has a pass in Sijil Pelajaran Malaysia (SPM)/ equivalent with at least 4B in Physics and</td>
</tr>
<tr>
<td>The applicant must not be colour blind or physically disabled such as to impair completing practical assignments.</td>
</tr>
</tbody>
</table>
FOR MATRICULATION HOLDERS

<table>
<thead>
<tr>
<th>Universities General Requirements</th>
<th>A pass in Sijil Pelajaran Malaysia (SPM) / equivalent with a credit in Bahasa Melayu/Bahasa Malaysia or Bahasa Melayu/Bahasa Malaysia July Paper; and</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A pass in MOE Matriculation/ UM Science Foundation/ UiTM Foundation with CGPA of at least 2.00; and</td>
</tr>
<tr>
<td></td>
<td>Obtained at least Band 1 in the Malaysian University English Test (MUET).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programme Specific Requirements</th>
<th>Obtained at least C Grade (NGMP 2.00) in MOE Matriculation/ UM Science Foundation/ UiTM Foundation in all of the following subjects:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Mathematics / Engineering Mathematics</td>
</tr>
<tr>
<td></td>
<td>• Chemistry / Engineering Chemistry / Engineering Science</td>
</tr>
<tr>
<td></td>
<td>• Physics / Engineering Physics / Biology / Electrical and Electronic Engineering Studies</td>
</tr>
<tr>
<td></td>
<td>and</td>
</tr>
<tr>
<td></td>
<td>The applicant who did not take Physics at STPM level must has a pass in Sijil Pelajaran Malaysia (SPM)/ equivalent with at least 4B in Physics.</td>
</tr>
<tr>
<td></td>
<td>and</td>
</tr>
<tr>
<td></td>
<td>The applicant must not be colour blind or physically disabled such as to impair completing practical assignments</td>
</tr>
</tbody>
</table>
FOR STPM HOLDERS

| Universities General Requirements | A pass in Sijil Pelajaran Malaysia (SPM) / equivalent with a credit in Bahasa Melayu / Bahasa Malaysia or a credit in Bahasa Melayu / Bahasa Malaysia July Paper;
A pass in Sijil Tinggi Persekolahan Malaysia (STPM) with CGPA of at least 2.00 and obtained at least:
- C Grade (NGMP 2.00) in General Studies; and
- C Grade (NGMP 2.00) in two (2) other subjects, and
Obtained at least Band 1 in the Malaysian University English Test (MUET). |
| Programme Specific Requirements | A pass in Sijil Tinggi Persekolahan Malaysia (STPM) with at least C Grade (NGMP 2.00) in all of the following subjects:
- Mathematics T/Further Mathematics T/ Mathematics S
- Chemistry
- Physics/Biology
and
The applicant who did not take Physics at STPM level must has a pass in Sijil Pelajaran Malaysia (SPM)/ equivalent with at least 4B in Physics.
and
The applicant must not be colour blind and not physically disabled such as to impair completing practical assignments. |
Student’s performance in every subject is evaluated based on the grade obtained. Grading system is shown in Table 1.

Generally, minimum passing grade for a subject is Grade D. However grade D up to C- are categorized as conditional pass and the students are allowed to improve their grade by repeating the subject only once.

Table 1: Grading System and Point

<table>
<thead>
<tr>
<th>Grade (Achievement)</th>
<th>Relations between Marks Percentage and Grade Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marks Percentages</td>
</tr>
<tr>
<td>A (Excellent)</td>
<td>80 – 100</td>
</tr>
<tr>
<td>A- (Excellent)</td>
<td>75 – 79</td>
</tr>
<tr>
<td>B+ (Honours)</td>
<td>70 – 74</td>
</tr>
<tr>
<td>B (Honours)</td>
<td>65 – 69</td>
</tr>
<tr>
<td>B- (Pass)</td>
<td>60 – 64</td>
</tr>
<tr>
<td>C+ (Pass)</td>
<td>55 – 59</td>
</tr>
<tr>
<td>C (Pass)</td>
<td>50 – 54</td>
</tr>
<tr>
<td>C- (Conditional Pass)</td>
<td>47 – 49</td>
</tr>
<tr>
<td>D+ (Conditional Pass)</td>
<td>44 – 46</td>
</tr>
<tr>
<td>D (Conditional Pass)</td>
<td>40 – 43</td>
</tr>
<tr>
<td>E (Fail)</td>
<td>0 - 39</td>
</tr>
</tbody>
</table>
GRADUATION REQUIREMENT

<table>
<thead>
<tr>
<th>PROGRAMME</th>
<th>GRADUATION REQUIREMENT</th>
</tr>
</thead>
</table>
| Diploma of Electrical Engineering | Award of a Diploma will be made in two (2) regular semesters. Students are only eligible to be awarded a Diploma after the following conditions are met:
 i. Students must obtain Kedudukan Baik (KB) in the last semester.
 ii. Passed all subjects required for curriculum requirements:
 - Minimum credit hour requirements for the award of a Diploma is 99 credits which consists of 79 credits of Core Program (P) subjects and 20 credits of Compulsory University (W) subjects.
 iii. Has applied for the award, recommended by the faculty and approved by the Senate.
 iv. Other requirements set by the university. |
| Bachelor of Electrical Engineering | Award of a Degree will be made in two (2) regular semesters. Students are only eligible to be awarded a Degree after the following conditions are met:
 i. Students must obtain Kedudukan Baik (KB) in the last semester.
 ii. Passed all subjects required for curriculum requirements:
 - Minimum credit hour requirements for the award of a Degree is 138 credits hour which consists of 86 credits of Core Program (P) subjects, 30 credits of Core Courses (K) subjects and 22 credits of Compulsory University (W) subjects.
 iii. Has applied for the award, recommended by the faculty and approved by the Senate.
 iv. Passed MUET with a band set by the university.
 v. Other requirements set by the university. |
| Bachelor of Mechatronics Engineering | Award of a Degree will be made in two (2) regular semesters. Students are only eligible to be awarded a Degree after the following conditions are met:
 i. Students must obtain Kedudukan Baik (KB) in the last semester.
 ii. Passed all subjects required for curriculum requirements:
 - Minimum credit hour requirements for the award of a Degree is 139 credits which consists of 111 credits of Core Program (P) subjects, 6 credits of Core Courses (K) subjects and 22 credits of Compulsory University (W) subjects.
 iii. Has applied for the award, recommended by the faculty and approved by the Senate.
 iv. Passed MUET with a band set by the university.
 v. Other requirements set by the university. |
Demands for semi professional level labour forces that are trained in electrical engineering are extremely high especially in the industrial sector. To respond to that, UTeM’s Electrical Engineering diploma graduates are groomed with practical and application oriented knowledge so that they will be highly competitive in fulfilling the workforce markets.

Vacancies within the industries for engineers that are skilled and practical-oriented is on the rise. Lots of highly trained workforces in the entire engineering sector including Industry Power, Control, Instrumentation and Automation, Power Electronics and Drive and Mechatronics in professional level are required. Job opportunities for UTeM graduates in these fields will be more desirable by the industry once they have been equipped with the technical knowledge and strong practical skills.

Field of works for Bachelor of Electrical Engineering and Mechatronics Engineering graduates include:
- Semiconductor manufacturing industries
- Electrical items manufacturing
- High and Low Voltage components manufacturing
- Renewable Energy sector
- Oil and Gas Industries
- Consultancies Companies
- High technology industries such as aerospace industries
- Automation System manufacturing industries
- Biomedical Engineering Firms
- Software Development Sector
- Research and development Sector

Some of the career fields that are suitable include Process and Manufacturing Engineer, Design and Research Engineer, Consultancies Engineer, Testing and Quality Engineer, System Engineer and Academicians.
Soft skills can be defined as the generic skills which have been identified as very critical in the global working environment apart from the fast pace of technological advancement.

The elements of Soft Skills that must be developed and implemented by each student are as follows:

1. Communication Skills
2. Creative Thinking and Problem Solving Skills
3. Teamwork Skills
4. Continual Learning and Information Management
5. Entrepreneurship Skills
6. Professional Ethics and Moral Values
7. Leadership Skills.

Structure of Soft Skills Development in Institutional of Higher Learning Education:

1. Soft Skills Development via Formal Teaching and Learning Activities:
 - Stand Alone Subject Model
 - Embedded Model
 - Combination of Embedded Model & Stand Alone Subject Model

2. Soft Skills Development via Supporting-Oriented Programme
 - Academic-Focused Supporting Programme
 - Non-Academic-Focused Supporting Programme

3. Soft Skills Development via Campus Activities and Lifestyle
 - Residential College
 - Campus Environment
In UTeM students are free to take subjects offered by the Faculty at every semester based on their capability, as long as they comply with the rules and regulations set up by the Faculty and university academic rules. Students need to plan their own study carefully with the guide of their Academic Advisor during their study in the university.

Characteristics of the Semester System

- Students are free to take any subjects offered in each semester based on their ability and conditions of subject selection determined by the faculty and university’s academics regulations.

- Students should plan programs of study and learning appropriate which will needs the advices from academic adviser during the studies.

The Importance of an Academic Advisor (PA)

- Students need to be given a proper advice in term of subjects taken under the semester system, where they are free to determine the number of subjects to be taken based on their capability or in the case the student obtained a Conditional Position in the previous semester. They need to plan carefully to take subjects which are suitable for them to carry and fully aware on its implication to their whole study period in the university.

- Semester system is a flexible system for a student with high, moderate or less capability to complete their study based on their own capability comply to the maximum study period set up by the university.

- The Academic Advisor is able to provide an advice not only in the academic matter, but also in the aspects of how the students can adapt themselves to the semester system, culture shock of studying in the university, time management and private matters that may affect the students’ study performance.

- In the condition where the student is not with the same batch of other students during the study period due to difference in the subjects taken, difficulty may be expected for him/her to discuss on the matter of study with the others. Here, the Academic Advisor is importance to provide a proper guidance.
Roles and Responsibilities of student and Academic Advisor in the Academic Advisory System are as follow:

<table>
<thead>
<tr>
<th>Roles/Responsibilities of Academic Advisor</th>
<th>Roles/Responsibilities of Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Conduct a meeting with the students at least two times for every semester.</td>
<td>• Always be open minded when meeting with the Academic Advisor.</td>
</tr>
<tr>
<td>• Make sure to student understand the academic system in UTeM.</td>
<td>• Conduct a meeting with the Academic Advisor at least two times for every semester.</td>
</tr>
<tr>
<td>• Provide an advice and make sure student’s subjects registration is based on his/her current academic result.</td>
<td>• Make the Academic Advisor as a mentor and always get an advice on the academic matter.</td>
</tr>
<tr>
<td>• Supervise the student study progress and provide a guidance in making a good study planning.</td>
<td>• Make sure to have a good understanding on the academic system.</td>
</tr>
<tr>
<td>• Provide student to always be motivated in their study etc.</td>
<td>• Provide a copy of examination result to the Academic Advisor at each semester.</td>
</tr>
<tr>
<td>• Supervise the student record and file to be always updated – make sure no subject is missed to fulfil the requirement for degree award.</td>
<td>• Get the certification of registration form, copy of certificates and reference letter from the Academic Advisor.</td>
</tr>
<tr>
<td>• Refer the student to the certain department/centre for further action if necessary.</td>
<td>• Always keep a record on all subjects that already been taken during the period of study to prevent missed subject and fulfil the requirement for degree award.</td>
</tr>
</tbody>
</table>
Lists of the Faculty’s External Examiner, Visiting Professor, Adjunct Professor and Industrial Advisory Panel

<table>
<thead>
<tr>
<th>EXTERNAL EXAMINER</th>
<th>QUALIFICATIONS</th>
<th>POSITION</th>
<th>APPOINTMENT PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Mohd Marzuki Bin Mustafa</td>
<td>B.Eng, University of Tasmania Master, Univ. of Manchester Inst. of Science & Technology (UMIST) Ph.D, University of Salford</td>
<td>Professor, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering, UKM</td>
<td>1 January 2010 – 31 December 2011</td>
</tr>
<tr>
<td>Prof. Dr. Atsuo Kawamura</td>
<td>B.Sc. in Electrical Engineering, University of Tokyo M.Sc. in Electrical Engineering, University of Tokyo Ph.D in Electrical Engineering, University of Tokyo</td>
<td>Professor Department of Electrical & Computer Engineering Yokohama National University</td>
<td>1 January 2010 – 31 December 2011</td>
</tr>
<tr>
<td>Professor Dr. Momoh-Jimoh Eyiomika Salami</td>
<td>B.Sc. Electronics and Electrical Engineering, Univ of Ile-Ife, Nigeria PG. Dip, Philips Int. Institute for Technological Studies, Holland Ph.D in Electrical Engineering, University of Calgary</td>
<td>Professor, Department of Mechatronics Engineering Deputy Dean Postgraduate & Research, Faculty of Engineering, IIUM</td>
<td>1 August 2009 – 31 July 2011</td>
</tr>
<tr>
<td>Prof. Ir. Dr. Abdul Halim Mohamed Yatim</td>
<td>B.Sc. Electrical & Electronic Engineering, Portsmouth Poly, UK, M.Sc. , Ph.D Power Electronics, Bradford University, UK.</td>
<td>Professor, Dean, Faculty of Electrical Engineering, UTM</td>
<td>1 June 2010 – 30 June 2012</td>
</tr>
<tr>
<td>VISITING PROFESSOR</td>
<td>QUALIFICATIONS</td>
<td>POSITION</td>
<td>APPOINTMENT PERIOD</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Prof. Dr. Nasrudin Abd. Rahim</td>
<td>B.Sc (Hons), University of Strathclyde Glasgow, U.K</td>
<td>Professor, Head of Department (Electrical Engineering) Faculty of Engineering Universiti Malaya</td>
<td>1 January 2009 – 31 December 2010</td>
</tr>
<tr>
<td></td>
<td>M.Sc (Power Engineering), University of Strathclyde, Glasgow, U.K</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph.D, Heriot-watt University Edinburgh, U.K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Mohd. Zaid Abdullah</td>
<td>B.App.Sc (Hons) USM M.Sc., Ph.D. UMIST C.Eng., MIEE, UK</td>
<td>Professor, Dean, School of Electrical & Electronic Engineering, Universiti Sains Malaysia</td>
<td>1 June 2010 – 30 June 2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Faz Rahman</td>
<td>B.Sc. in Electrical Engineering, Bangladesh University of Engineering and Technology M.Sc. in Power Electronics & Systems, UMIST Ph.D. in Electrical Engineering, UMIST</td>
<td>Professor, School of Electrical Engineering & Telecommunications, University of New South Wales</td>
<td>1 August 2009 – 31 July 2011</td>
</tr>
<tr>
<td>ADJUNCT PROFESSOR</td>
<td>QUALIFICATIONS</td>
<td>POSITION</td>
<td>APPOINTMENT PERIOD</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Dr Ab. Halim Abu Bakar</td>
<td>B.Sc in Electrical Engineering, Southampton University, UK M.Sc, Ph.D. UTM</td>
<td>Consultant, Department Electrical Engineering, Faculty of Engineering Building, UM</td>
<td>1 June 2010 – 30 June 2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDUSTRIAL ADVISORY PANEL</th>
<th>POSITION</th>
<th>APPOINTMENT PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ir. Sh. Jaafar bin Sh. Isma</td>
<td>Principal (Electrical), Menara Teknik Sdn Bhd.</td>
<td>1 March 2011 – 28 February 2013</td>
</tr>
<tr>
<td>Ir. Abd Aziz bin Mohd Yusof</td>
<td>Makhosetia Sdn Bhd</td>
<td>1 March 2011 – 28 February 2013</td>
</tr>
<tr>
<td>Ir. Abdul Wahid Paijo</td>
<td>Executive Director, Secure Consult (S.E.A.) Sdn Bhd</td>
<td>1 March 2011 – 28 February 2013</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>Period</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Ir. Hj. Rosman bin Ismail</td>
<td>Head of Factory Service, Proton</td>
<td>1 August 2010 – 31 July 2012</td>
</tr>
<tr>
<td>Ir. Guntur Tobeng</td>
<td>Managing Director, Gading Kencana Sdn Bhd</td>
<td>1 March 2011 – 28 February 2013</td>
</tr>
<tr>
<td>Ir. Abdul Halim bin Baharudin</td>
<td>State Manager - Pahang Asset Maintenance, TNB Transmission</td>
<td>1 March 2011 – 28 February 2013</td>
</tr>
</tbody>
</table>
DIPLOMA PROGRAMME
DIPLOMA IN ELECTRICAL ENGINEERING

This program is intended to produce semi-professional graduates who possess strong engineering knowledge based on skills as assistant engineers. Apart from that, this program is a pathway for students with SPM qualification to further their studies to a higher level in their respective fields, especially the Electrical and Mechatronics Engineering Bachelor’s Programme in UTeM.

PROGRAMME EDUCATIONAL OBJECTIVES (PEO) - DIPLOMA PROGRAMME

Programme Educational Objective (PEO) are specific goals describing the expected achievement of graduates in their career and professional life within 4 to 6 years of graduation. Below are the PEO for the Faculty of Electrical Engineering’s Diploma Programme.

<table>
<thead>
<tr>
<th>NO</th>
<th>PROGRAMME EDUCATIONAL OBJECTIVES (PEO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Three to five years after completing their studies, the graduates will be Assistant Engineers who are able to carry out the job effectively and recognized by their employer.</td>
</tr>
<tr>
<td>2.</td>
<td>Three to five years after completing their studies, the graduates will be competent Assistant Engineers, able to solve technical problems properly.</td>
</tr>
<tr>
<td>3.</td>
<td>Three to five years after completing their studies, the graduates will be Assistant Engineers that hold to the good values in providing quality services.</td>
</tr>
<tr>
<td>4.</td>
<td>Three to five years after completing their studies, the graduates will be Assistant Engineers who have vision in developing their self and career through lifelong learning process.</td>
</tr>
<tr>
<td>5.</td>
<td>Three to five years after completing their studies, the graduates will be a creative and innovative Assistant Engineer in technical fields and applies it in the techno-entrepreneurs sector.</td>
</tr>
</tbody>
</table>
Programme Outcome (PO) are statements describing what students are expected to know and be able to perform or attain by the time of graduation. These are related to the Knowledge (K), Skills (S), and Attitude (A) that students acquire throughout the programme.

Below is the list of Programme Outcomes for Faculty of Electrical Engineering’s Diploma Programme:

<table>
<thead>
<tr>
<th>NO</th>
<th>PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ability to apply fundamental knowledge of mathematics, sciences and engineering in field of electrical engineering.</td>
</tr>
<tr>
<td>2.</td>
<td>Ability to identify, analyze and solve well-defined electrical engineering problems based on provided information.</td>
</tr>
<tr>
<td>3.</td>
<td>Ability to use appropriate engineering tools to perform related jobs through engineering practices.</td>
</tr>
<tr>
<td>4.</td>
<td>Ability to communicate and deliver ideas using appropriate method effectively.</td>
</tr>
<tr>
<td>5.</td>
<td>Ability to comply the professional ethics and responsibility.</td>
</tr>
<tr>
<td>6.</td>
<td>Ability to work as a team effectively and exhibit good leadership skills toward achieving goal.</td>
</tr>
<tr>
<td>7.</td>
<td>Ability to undertake lifelong learning process.</td>
</tr>
<tr>
<td>8.</td>
<td>Ability to have basic entrepreneurship knowledge and skills in the related field.</td>
</tr>
<tr>
<td>9.</td>
<td>Ability to apply social skills and fulfil the relevant responsibilities towards society.</td>
</tr>
</tbody>
</table>
The number of credits required to be awarded a Diploma is **99** credits.

This course will take three (3) years minimum which emphasis on the latest technology and up to date skills.

The composition of the credits is as follows:

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Credit Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory University Courses</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>Core Program Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering (65 Credit Hours)</td>
<td>79</td>
<td>80%</td>
</tr>
<tr>
<td>Science and Mathematics (14 Credit Hours)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This course is based on practical and application oriented where the student will be involved in laboratory experiments, computer aided learning, working on practical assignments in electrical engineering workshop. UTeM is the first to conduct this type of Diploma.
<table>
<thead>
<tr>
<th>Type of Course</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Program (P)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEKA 1212</td>
<td>DEKA 1222</td>
<td>DEKA 232</td>
<td>DEKA 343</td>
</tr>
<tr>
<td>ALGEBRA</td>
<td>CALCULUS</td>
<td>DIFFERENTIAL EQUATION</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td>DEKA 1213</td>
<td>DITG 1113</td>
<td>DEKA 233</td>
<td>DEKA 243</td>
</tr>
<tr>
<td>PHYSICS</td>
<td>COMPUTER</td>
<td>INTRODUCTION TO ELECTRICAL TECHNOLOGY</td>
<td>ANALOGUE</td>
</tr>
<tr>
<td>DEKC 1513</td>
<td>DMCG 1323</td>
<td>DEK 233</td>
<td>DEK 234</td>
</tr>
<tr>
<td>MEASUREMENTS</td>
<td>INTRODUCTION TO MECHATRONICS SYSTEM</td>
<td>DEK 243</td>
<td>ELECTRONICS II</td>
</tr>
<tr>
<td>DEKP 1213</td>
<td>DEK 1323</td>
<td>DEK 243</td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL CIRCUIT I</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>ELECTRICAL</td>
<td></td>
</tr>
<tr>
<td>DEKP 1121</td>
<td>ELECTRICAL</td>
<td>ELECTRIC</td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL CIRCUIT I</td>
<td>WORKSHOP I</td>
<td>WORKSHOP II</td>
<td></td>
</tr>
<tr>
<td>Compulsory University Subjects (W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLHW 1012</td>
<td>DLHW 2402</td>
<td>DLHW 1722</td>
<td>DLHW 2712</td>
</tr>
<tr>
<td>FOUNDATION</td>
<td>TECHNICAL</td>
<td>SCIENCE & TECHNOLOGY</td>
<td>DLHC XXX2</td>
</tr>
<tr>
<td>ENGLISH</td>
<td>COMMUNICATION</td>
<td>PHILOSOPHY</td>
<td>ETHNIC</td>
</tr>
<tr>
<td>DTKW 1012</td>
<td>DTKW 132</td>
<td>DTKW 132</td>
<td>RELATIONS</td>
</tr>
<tr>
<td>TITAS</td>
<td>FUNDAMENTAL OF ENTREPRENEURSHIP CULTURE</td>
<td>SOCIO-ECONOMIC DEVELOPMENTS</td>
<td></td>
</tr>
<tr>
<td>DKKX 2XX1</td>
<td>CO-CURRICULUM I</td>
<td>DLHW 3402</td>
<td>TECHNICAL COMMUNICATION II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Hour Semester</td>
<td>13</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Total Hours Total Credit Semester</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>
Credit Hours and Pre-Requisite - DEK

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Subject</th>
<th>Category</th>
<th>Credit Hour</th>
<th>Pre-Requisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLHW 1012</td>
<td>FOUNDATION ENGLISH</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLHW 1702</td>
<td>TITAS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKA 1213</td>
<td>PHYSICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKA 1212</td>
<td>ALGEBRA</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DITG 1112</td>
<td>COMPUTER SKILLS</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKP 1213</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKC 1513</td>
<td>MEASUREMENTS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLHW 2402</td>
<td>TECHNICAL COMMUNICATION I</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTKW 1012</td>
<td>FUNDAMENTAL OF ENTREPRENEURSHIP CULTURE</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DKKX 2XX1</td>
<td>CO-CURRICULUM I</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKA 1222</td>
<td>CALCULUS</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DITG 1113</td>
<td>COMPUTER PROGRAMMING</td>
<td>P</td>
<td>3</td>
<td>DEKP 1213</td>
</tr>
<tr>
<td></td>
<td>DMCG 1323</td>
<td>INTRODUCTION TO MECHANICAL SYSTEM</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKP 1323</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKP 1121</td>
<td>ELECTRICAL WORKSHOP I</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Semester 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLHW 1722</td>
<td>SCIENCE & TECHNOLOGY PHILOSOPHY</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLHW 1732</td>
<td>SOCIO-ECONOMIC DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLHW 3402</td>
<td>TECHNICAL COMMUNICATION II</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DKKX 2XX1</td>
<td>CO-CURRICULUM II</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKA 2332</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKP 2333</td>
<td>INTRODUCTION TO ELECTRICAL TECHNOLOGY</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKE 2433</td>
<td>ANALOGUE ELECTRONICS I</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
<td>CATEGORY</td>
<td>CREDIT</td>
<td>HOUR</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER 4</td>
<td>DEKE 2333</td>
<td>DIGITAL ELECTRONICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLHC 3012</td>
<td>NEGOTIATION SKILLS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>CRITICAL & CREATIVE THINKING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLHC 3022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKA 2342</td>
<td>ENGINEERING MATHEMATICS</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKE 2443</td>
<td>ANALOGUE ELECTRONICS II</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKM 2343</td>
<td>INTRODUCTION TO MECHATRONICS SYSTEM</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 5</td>
<td>DEKC 2323</td>
<td>INSTRUMENTATION</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKP 2242</td>
<td>ELECTRICAL WORKSHOP II</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SHORT</td>
<td>DEKU 2363</td>
<td>INDUSTRIAL TRAINING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 6</td>
<td>DLHW 2712</td>
<td>ETHNIC RELATIONS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKC 3433</td>
<td>COMMUNICATION ENGINEERING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKC 3453</td>
<td>MICROPROCESSOR</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKM 3753</td>
<td>ELECTRICAL MACHINES</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKC 3813</td>
<td>CONTROL SYSTEM ENGINEERING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKP 3353</td>
<td>ENGINEERING PRACTICE</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 6</td>
<td>DACA 4142</td>
<td>ENTREPRENEURSHIP TECHNOLOGY</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKE 3443</td>
<td>POWER ELECTRONICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKC 3643</td>
<td>AUTOMATION</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKP 3763</td>
<td>POWER SYSTEM</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKP 3463</td>
<td>DIPLOMA PROJECT</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT</td>
<td></td>
<td></td>
<td></td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>

P = Core Program, W = Compulsory University
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Subject</th>
<th>Face-to-Face Learning</th>
<th>Self Learning Activities</th>
<th>Formal Assessment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teacher Centered (TC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PBL / Other SCL Activities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Student Centered (SCL)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Student Direct Learning / Revision / Exercise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Continuous Learning + Final Examination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DLHW 1012</td>
<td>FOUNDATION ENGLISH</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DLHW 1702</td>
<td>TITAS</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DEKA 1213</td>
<td>PHYSIC</td>
<td>28</td>
<td>24</td>
<td>15</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>DEKA 1212</td>
<td>ALGEBRA</td>
<td>28</td>
<td>14</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DITG 1112</td>
<td>COMPUTER SKILLS</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DEKP 1213</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>28</td>
<td>18</td>
<td>16</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>DEKC 1513</td>
<td>MEASUREMENTS</td>
<td>28</td>
<td>16</td>
<td>18</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>DLHW 2402</td>
<td>TECHNICAL COMMUNICATION I</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DTKW 1012</td>
<td>FUNDAMENTAL OF ENTREPRENEURSHIP</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DKKX 2XX1</td>
<td>CO-CURRICULUM I</td>
<td>28</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKA 1222</td>
<td>CALCULUS</td>
<td>28</td>
<td>14</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DITG 1113</td>
<td>COMPUTER PROGRAMMING</td>
<td>28</td>
<td>18</td>
<td>16</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>DMCG 1323</td>
<td>INTRODUCTION TO MECHANICAL SYSTEM</td>
<td>28</td>
<td>18</td>
<td>16</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>DEKP 1121</td>
<td>ELECTRICAL WORKSHOP I</td>
<td>36</td>
<td></td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DEKP 1323</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>28</td>
<td>16</td>
<td>18</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>DLHW 1722/ DLHW 1732</td>
<td>SCIENCE & TECHNOLOGY PHILOSOPHY OR SOCIO ECONOMIC DEVELOPMENT</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DLHW 3402</td>
<td>TECHNICAL COMMUNICATION II</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>Semester</td>
<td>Code</td>
<td>Subject</td>
<td>Teacher Centered (TC)</td>
<td>Student Centered Learning (SCL)</td>
<td>Self Learning Activities</td>
<td>Formal Assessment</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---</td>
<td>-----------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>DLHW 1012</td>
<td>FOUNDATION ENGLISH</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DLHW 1702</td>
<td>TITAS</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DEKA 1213</td>
<td>PHYSIC</td>
<td>28</td>
<td>24</td>
<td>48</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DEKA 1212</td>
<td>ALGEBRA</td>
<td>28</td>
<td>14</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DITG 1112</td>
<td>COMPUTER SKILLS</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DEKP 1213</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>28</td>
<td>18</td>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DEKC 1513</td>
<td>MEASUREMENTS</td>
<td>28</td>
<td>16</td>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>DLHW 2402</td>
<td>TECHNICAL COMMUNICATION I</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DTKW 1012</td>
<td>FUNDAMENTAL OF ENTREPRENEURSHIP</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DKKX 2XX1</td>
<td>CO-CURRICULUM I</td>
<td>28</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEKA 1222</td>
<td>CALCULUS</td>
<td>28</td>
<td>14</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DITG 1113</td>
<td>COMPUTER PROGRAMMING</td>
<td>28</td>
<td>18</td>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DMCG 1323</td>
<td>INTRODUCTION TO MECHANICAL SYSTEM</td>
<td>28</td>
<td>18</td>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DEKP 1121</td>
<td>ELECTRICAL WORKSHOP I</td>
<td></td>
<td></td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DEKP 1323</td>
<td>ELECTRICAL CIRCUIT II</td>
<td></td>
<td></td>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>DLHW 1722/</td>
<td>SCIENCE & TECHNOLOGY PHILOSOPHY OR SOCIO ECONOMIC</td>
<td></td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DLHW 1732</td>
<td>DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DLHW 3402</td>
<td>TECHNICAL COMMUNICATION II</td>
<td></td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
</tbody>
</table>
NOTE: Subjects arranged based on alphabetical order.

DEKA 1212
ALGEBRA

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain the concept of basic mathematics.
2. Use the knowledge of basic mathematics to enhance their advanced mathematics such as calculus, Engineering Mathematics and Differential Equation.
3. Apply the knowledge of mathematics in physical and electrical engineering fields.

Synopsis
This subject consists 7 chapters: Real number system, Complex number, Matrices, Geometric-Coordinate, Function and graph, Trigonometry and Polynomials.

References

DEKA 1213
PHYSICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain basic concept in physics, covering aspect such as mechanics, electric and thermodynamics.
2. Apply the laws and the concepts systematically to solve problems.
3. Handle laboratory equipment based on correct procedures.
4. Make accurate measurement and present the results in a proper scientific report.
5. Apply physics knowledge in the engineering field.

Synopsis
The topics covers in this subject are: Forces, Acceleration and Newton’s Second Law of Motion, Motion with a Changing Velocity, Circular Motion, Conservation of Energy, Linear Momentum, Fluids, Heat, Temperature, Electric Forces and Fields, Capacitor, Electric Current and Circuits, Reflection and Refraction of Light. Experiments are categorized into 2 types; computer aided and manual. Topics covered include Mechanics, Thermal Physics, and Electricity and Optics.

References

DEKA 1222
CALCULUS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Find limits and continuity of functions.
2. Find derivatives of algebraic, trigonometric, logarithmic, and exponential functions.
3. Find integrals of some algebraic and exponential functions.
4. Use derivative and integrals to solve engineering problems.

Synopsis
This course will discuss about Limits and continuity, Differentiation and Application of Differentiation, Integration and Application of Integration.

References

DEKA 2332
DIFFERENTIAL EQUATIONS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Define the terminologies which are commonly used in differential equations.
2. Verify that the given function is a solution of the given differential equation.
4. Find the Fourier Series of a given function
5. Apply the knowledge of differential equations in order to solve engineering problems.

Synopsis
This subject discusses about the basic concepts of Differential Equation; First Order Differential Equation; Second Order Linear Differential Equation with constant coefficients; Laplace Transforms and Fourier series. The syllabuses are developed to expose the learner’s on the fundamental concept of differential equations.

References

DEKA 2342
ENGINEERING MATHEMATICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Sketch the contour map and graph for a certain function.
2. Use partial derivatives to find the approximation and extreme for certain functions.
3. Evaluate the double and triple integrals of functions using various techniques.
4. Use the techniques of integration to calculate the area and volume of the region.
5. Use vector-valued function to calculate curvature and torsion for certain functions.

Synopsis
This subject consists of three chapters: Functions of Several Variables, Multiple Integrals and Vector-valued Functions. The syllabus is extended from Calculus taken by student in Semester 2 Year 1. Its emphasize on the concepts of the functions with severable variables, double and triple integrations and also vector-valued function, followed by learning various techniques in solving the problems.
References

DEKC 1513
MEASUREMENTS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify electrical quantities related to various measurement standards.
2. Calculate errors in measurement through statistical analysis.
3. Describe the application of PMMC instrument for DC ammeter and DC voltmeter.
4. Explain full and half wave rectifier in AC voltmeter design.
5. Construct and demonstrate Wheatstone bridge through experiments.

Synopsis
Prior to the lecture session, this course will be discussing on unit, dimension and standards in measurement. It touches most on the Measurement System as well as measurement instruments such as galvanometers, ammeters and voltmeters. A DC and AC Wheatstone Bridge, Potentiometers and Energy/Power measurements/Wattmeters also to be taught in this course.

References
2. Fatimah Sham Ismail, Anita Ahmad; Pengukuran dan Instrumentasi; UTM; 2002.

DEKC 2323
INSTRUMENTATION

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Define the basic concept of instrumentation.
2. Demonstrate experiment on the bridge, oscilloscope and signal conditioning circuitry.
3. Apply several types of sensors and transducers in instrumentation systems.
4. Describe data acquisition process for data collection purpose in instrumentation systems.
5. Design a simple application of PIC or PLC with combination of several sensors and switches.

Synopsis
This subject will discuss about the concepts of transducer such as movement, position, force, pressure, temperature, flow and light; bridge including Wheatstone, Schering and Maxwell; Signal conditioning circuit such as ADC/DAC and Data Acquisition System.

References
3. Instek GOS-6xxG Dual trace oscilloscope user manual.

DEKC 3433
COMMUNICATIONS ENGINEERING

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain a basic knowledge on the communication engineering.
2. Define and analyze noise in communication system.
3. Describe the modulation and demodulation techniques of AM and FM.
4. Explain the transmission and reception process of AM & FM.
5. Identify the concept of analogue and digital pulse modulation.

Synopsis
Communication systems – definitions, needs and development of communications system, types of communications system, the elements of communications system, introduction of multiplexing. Amplitude Modulation – signal analysis, modulation index, frequency spectrum, AM transmission – DSBSC, SSB, VSB transmission system. AM receiver – DSB & SSB detector, envelope detector, superhetrodyne receiver, automatic gain control. Frequency modulation – frequency deviation, modulation index, Bessel function. FM transmission – modulator circuits. FM receiver – Foster Seeley, ratio detector. External noise, internal noise, noise calculation, noise factor. Comparison between AM and FM.

References

DEKC 3453
MICROPROCESSOR

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe the concept of microprocessor and computer system.
2. Write and debug programs using assembly language for microprocessor applications.
3. Construct microprocessor system with memory and peripheral device interfaces.

4. Interface and program the peripheral device to communicate with the microprocessor.
5. Demonstrate the practical competence using MC68000 microprocessor for software and hardware development.

Synopsis
This course is about introduction to microprocessor architecture, instruction set, addressing mode, assembly language programming and interrupt. Interfacing technique with memory device and peripheral, parallel and serial interfacing, interfacing with ADC/DAC and data sampling technique. System simulation and emulation based on microprocessor.

References

DEKC 3643
AUTOMATION

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. State the concept of automation, Programmable Logic Controller (PLC) and their components.
2. Apply digital system knowledge such as number system, codes and logic function in PLC base application.
3. Identify external I/O devices of PLC system, draw PLC I/O connection diagram and carry out their wiring in terms of their symbol and connection.
4. Construct PLC ladder diagram and mnemonic codes generation for small and basic application using programming console.
5. Describe and built pneumatic and hydraulic systems for fluid power actuation solution.
6. Recite robotic technology in term of motion axes and geometry.

Synopsis
This subject will introduce a fundamental of the automation and manufacturing, their components such as actuators, sensors as well linear and rotary transportation devices. It will also covers on the automation control system, either using servo system, analogue or digital systems, electronic logic controlled and programmable logic controller (PLC). Computer based controlled systems such as automation work-cell and computer integrated manufacturing systems (CIMS) will also be included.

References

DEKC 3813
CONTROL SYSTEM ENGINEERING

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Recognize differences between open and closed loop system and also to understand how to develop differential equation models of physical system in order to obtain the transfer function.
2. Analyze control systems in time and frequency domain.
3. Identify the effectiveness of a feedback control systems using transient and steady state responses.
4. Determine steady state error using Routh Hurtwitz criterion.
5. Demonstrate experiments of control systems as well as to analyze and interpret data.

Synopsis
This subject will discuss about the concepts in control system; open and closed loop system; transfer function; signal flow graphs; feedback control system; modeling for electrical system, mechanical system, electromechanical system; analysis in time and frequency domain responses; stability in time and frequency domain; root locus and bode plot.

References

DEKE 2333
DIGITAL ELECTRONICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe the basic numbering system including the decimal, binary, octal and hexadecimal.
2. Simulate basic combinational logic circuit.
3. Apply basic gates and flip-flops used in digital circuit.
4. Identify types of logic gates family within the integrated circuit (IC).
5. Describe the function of counters and adders in the digital circuits.
6. Develop the skill of critical thinking and problem solving in the engineering application as well as communication skill and teamwork spirit.

Synopsis
This course will equip students with basic principle, techniques and conventions used in digital electronic circuit design.
References

DEKE 2433
ANALOGUE ELECTRONICS I

Learning Outcomes
Upon completion this subject, the students should be able to:
1. Explain the characteristics and operation of semiconductor, diode, BJT and FET.
2. Explore the applications of diode, BJT and FET.
3. Analyze the operation and characteristics of diode, BJT and FET.
4. demonstrate practical competence on diode and BJT application circuits.
5. Explain the operation and characteristics of power amplifier

Synopsis
Semiconductor theories - introduction, atomic structure, covalent bonding, majority and minority carrier, p-n junction. Diode - introduction, characteristics & parameters of diode, diode equivalent circuit, types of diode, analysis and application. Bipolar junction transistor (BJT) - introduction, dc analysis, construction, transistor operation, shape and symbol, configuration, limit of operation, transistor specification, dc biasing, bias stabilization. BJT-introduction, ac analysis, hybrid equivalent circuit, equivalent circuit for all biasing, amplification circuit with Rs and Re, two port system. FET - introduction, structure, characteristics, types of bias, transfer characteristics curve, small signal analysis, frequency response and amplifier multi stage. Power Amplifier - Introduction to amplifier classes, circuit & operation difference for each classes, distortion within the amplifier and power transistor heat sinking.

References

DEKE 2443
ANALOGUE ELECTRONICS II

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain the operation of operational amplifier, voltage regulator, feedback circuit, oscillator and active filter.
2. Analyze the operational amplifier, voltage regulator, feedback circuit, oscillator and active filter characteristics and application
3. Apply the operational amplifier, voltage regulator, feedback circuit, oscillator and active filter for industrial electronics application
4. Conduct and demonstrates practical experiments of operational amplifier, voltage regulator, feedback circuit, oscillator and active filter.
5. Simulates the operation of operational amplifier, voltage regulator, feedback circuit, oscillator and active filter by using the simulation software (PSpice).

Synopsis
DEK 3443
POWER ELECTRONICS

Learning Outcomes
Upon completion this subject, the students should be able to:
1. Describe the principle and operation of power electronics, power semiconductor devices and converters
2. Explain the semiconductor power switches application in industrial practices.
3. Analyze the characteristics and performance of rectifiers, choppers and inverters.
4. Demonstrate practical competence on power electronics converters.
5. Apply the power electronics devices for switching power supplies.

Synopsis
This course is about the basic principles of power electronics, semiconductor power switches, one and three-phase inverter, the application of semiconductor devices as power electronics converters such as AC to DC, AC to AC, DC to DC and DC to AC converters, circuits as DC drives, AC drives and snubbers.

References

DEKM 2343
INTRODUCTION TO MECHATRONICS SYSTEM

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify and explain the basic concept and the engineering applications of Mechatronics systems.
2. Describe and relate the basic Mechatronics system with engineering application.
3. Identify the characteristics of Mechatronics system.
4. Relate machine and mechanism design with Mechatronics system.
5. Solve and analysis simple Mechatronics engineering problem.

Synopsis

References
DEKM 3753
ELECTRICAL MACHINES

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain the types, physical construction and equivalent circuit diagrams of electrical machines.
2. Distinguish the characteristics of electrical machines.
3. Demonstrate the performance of electrical machines.
4. Choose suitable types of electrical machines for different applications.

Synopsis
This subject covers an introduction to three-phase transformer, DC and AC type of electrical machines which involve physical construction, equivalent electrical circuit diagrams. The machine performances like torque, speed and efficiency are distinguished for each electrical machine type. Introduction to the starting methods and speed control techniques are also demonstrated so that better machine selection for an appropriate application.

References

DEKP 1121
ELECTRICAL WORKSHOP I

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify basic electrical components for domestic wiring installation.
2. Construct and demonstrate relay control circuits.
3. Describe basic electronic components and perform soldering process.
4. Apply the fundamental techniques of domestic wiring; relay control circuit wiring and PCB wiring processes.

Synopsis
This subject will expose students to basic domestic wiring, relay control, basic electronic components, and installation. Concentration is given on the safety aspects and quality of works.

References
1. Abdul Samad, Amalan Pemasangan Elektrik, DBP.
2. Mohd Nazi, Teknologi Pemasangan Elektrik, DBP.
5. Acceptability of Electronic Assemblies (Revision C, 2000).

DEKP 1213
ELECTRICAL CIRCUIT I

Learning Outcome
Upon completion of this subject, the student should be able to:
1. Calculate current, voltage and power across any elements in a circuit accurately.
2. Apply circuit’s laws and theorems in analyzing electrical circuits.
3. Differentiate direct current (DC) circuit and alternating current (AC) circuit precisely.
4. Analyze AC circuit parameters properly.
5. Analyze circuits using CAD and analysis tools (PSpice) accordingly.

Synopsis

References

DEKP 1323
ELECTRICAL CIRCUIT II

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Differentiate single phase AC circuit and three phase AC circuit.
2. Determine parameters in single phase and three phase circuit.
3. Describe the transient analysis of first and second order circuit.
4. Analyse the circuit in frequency response.
5. Recognize the parameters of two port network.

Synopsis
Single phase AC circuit: Series & parallel circuit, power, power factor & power resonance in single phase AC circuit.
Three phase AC circuit: Basic three phase system generator, power and analysis in three phase circuit.
Transient analysis: 1st order & 2nd order circuit.

References

DEKP 2242
ELECTRICAL WORKSHOP II

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Install the basic electrical domestic wiring circuit.
2. Build the basic electrical domestic wiring.
3. Make the costing calculation for electrical wiring.
4. Apply the workshop safety rules and regulation in the electrical wiring installation.
5. Apply the computer aided drawing software AUTOCAD in the basic engineering drawing.

Synopsis
Introduction to the basic domestic wiring system. Safety practice. Cable type and size of domestic cables. Testing and troubleshooting domestic wiring. Tools and testing equipments. Introduction to the AutoCAD for 2D basic engineering drawing. Creating, editing and plotting using computer aided drawing software.

References
1. Abdul Samad, Amalan Pemasangan Elektrik, DBP.
2. Mohd Nazi, Teknologi Pemasangan Elektrik, DBP.
6. Wiring System & Motor Starter Modul 2, UTeM.

DEKP 2333
INTRODUCTION TO ELECTRICAL TECHNOLOGY

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify and recognise the basic electrical system components.
2. Apply and implement magnetic field's laws such on magnetic force.
3. Investigate and explain the electromagnetic properties and laws.
4. Determines and analyze the magnetic circuits.
5. Apply and analyze the electromagnetic concepts for electrical transformer.

Synopsis
This subject introduces students to the Introduction of Electrical System, Electric & Magnetic Field, Electromagnetic, Magnetics Circuits and application of
Topics include:

- Introduction to Electrical System - basic electrical system, electric charges, electrons, electric field & electric potential, Gauss & Coulomb's law.
- Magnetic Field - magnetic force, torque & moment, Ampere's law, Biot-Savart's law.
- Electromagnetic - Magnetic flux, Faraday & Lenz Law, self induction of inductor, induces EMF.
- Magnetic circuit - series & parallel magnetic circuit, back emf in dc motor.
- Electrical transformers - single phase transformer, equivalent circuit, open & short circuit test, efficiency, voltage regulation.

References

Learning Outcomes

Upon completion of this subject, the student should be able to:

1. Manipulate and use all of their knowledge and skills to finish the project.
2. Think objectively, critically and analytically in determining and solving problems systematically.
3. Manage time, cost and equipment skilfully.
4. Convert results from the project into oral and written form.

Synopsis

This subject gives students an opportunity to practice the knowledge that they have learnt. At the end of semester, students are required to present their project achievement in oral presentation and submit a comprehensive project report. Student’s performance will be evaluated based on project achievement, presentation and project report.

References

References depend on the project title.
DEKP 3763
POWER SYSTEM

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe the basic concept of power system and their components.
2. Describe the basic principle and requirements for transmission and distribution system.
3. Calculate voltages, currents, power factors and efficiency of the transmission lines.
4. Calculate the fault level and short circuit current for symmetrical fault and asymmetrical faults.
5. Explain the basic principle and requirements for overhead lines and underground cable, type of insulation, testing and commissioning, condition monitoring and maintenance.

Synopsis
The purpose of this subject is to introduce students with basic concept of power system; components of power system such as synchronize machines, automatic voltage regulator, overhead lines, transformer, switching and protection equipments. Explain theories of symmetrical components for fault analysis, voltage control and reactance power, overhead lines and underground cables analysis. Besides, students will be exposing to the requirement of condition monitoring and maintenance.

References

DEKU 2363
INDUSTRIAL TRAINING

Learning Outcomes
Upon completion this subject, the student should be able to:
1. Acquire an early stage working experience that is related to electrical engineering.
2. Develop and practice the positive attitude and be prepared for a real working environment.
3. Enhance and apply professional skills and knowledge that are highly relevant to the needs of today’s workforce and industry.
4. Contribute creative ideas in solving engineering problems.
5. Present a report in oral and written about working experiences.

Synopsis
Industrial training is compulsory to students of Diploma in Electrical Engineering to graduate. Students will undergo industrial training after semester 4 of studies for a 10-week period of training at respective industrial companies. During the training period, the students will be continuously supervised by the industrial supervisor as well as supervision by the lecturers from Faculty. Students are required to record their daily activities in the logbook that been provided by Faculty. After completing the industrial training, students have to submit a formal report following the Faculty’s format. Evaluation will based on companies supervisor report, logbook and final report is the component for industrial evaluation for the grade either pass or fail.

References

DITG 1112
COMPUTER SKILLS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Learn the parts and types of computers.
2. Learn assembly of hardware and troubleshooting.
3. Learn how to create partition, format a computer, and install and operating system.
4. Learn and construct simple programming using C++.
5. Learn to use application software to process words, electronic display, presentation and database.
Synopsis
To give students exposure and knowledge about basic things in the field of ICT such as basic computer components, operating systems, application software, system development life cycle, network and internet. Introduction to computer: history, evolution and specification, exposure to computer hardware. Introduction to software system, operation and application (word processing, electronic display, presentation, network), programming and combining system methodology. Exposure regarding data communication, networking and internet.

References

References

DMCG 1323
INTRODUCTION TO MECHANICAL SYSTEM

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. define the general terms in basic mechanical system engineering
2. explain the general principles of static and mechanics
3. analyze the mechanical properties of materials
4. describe the basic concepts of dynamics and thermodynamics
5. conduct and demonstrate the basic practical works of mechanical system

Synopsis
Introduction to basic concepts in static and mechanics as a study of physical sciences, system of units, scalars and vectors, free body diagram, various types of structures, stress, strain, principles of dynamics based on kinetic and kinematics and basic concepts of thermodynamics

References
SERVICE SUBJECTS
(FPTT, PBPI & CO-CURRICULUM UNIT)

- DKKX 2XX1
 CO-CURRICULUM I & II

- DLHW 1012
 FOUNDATION ENGLISH

- DLHW 1702
 TAMADUN ISLAM DAN TAMADUN ASIA (TITAS)

- DLHW 1722
 SCIENCE & TECHNOLOGY PHILOSOPHY
 OR
 DLHW 1732
 SOCIO-ECONOMIC DEVELOPMENT

- DLHW 2402
 TECHNICAL COMMUNICATION I

- DLHW 2712
 ETHNIC RELATIONS

- DLHC 3012
 NEGOTIATION SKILLS
 OR
 DLHC 3022
 CRITICAL & CREATIVE THINKING

- DLHW 3402
 TECHNICAL COMMUNICATION II

Please refer to the Faculty of Technology Management & Technopreneurship (FPTT) handbook for further information on the offered subjects.

- DTKW 1012
 FUNDAMENTAL OF ENTREPRENEURSHIP CULTURE

- DACA 4142
 ENTREPRENEURSHIP TECHNOLOGY

Please refer to the Pusat Bahasa & Pembangunan Insan (PBPI) handbook for further information on the offered subjects.
BACHELOR PROGRAMME
Programme Educational Objective (PEO) are specific goals describing the expected achievement of graduates in their career and professional life within 4 to 6 years of graduation. Below are the PEO for the Faculty of Electrical Engineering’s Bachelor Programme:

<table>
<thead>
<tr>
<th>NO</th>
<th>PROGRAMME EDUCATIONAL OBJECTIVES (PEO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>To produce engineers who are able to apply engineering knowledge in their professional careers.</td>
</tr>
<tr>
<td>2.</td>
<td>To produce engineers who are creative and innovative in their field.</td>
</tr>
<tr>
<td>3.</td>
<td>To produce engineers who practice high standards of ethical conduct, good leadership quality and societal responsibilities.</td>
</tr>
<tr>
<td>4.</td>
<td>To produce engineers who are capable of developing their professional career through continuous education.</td>
</tr>
</tbody>
</table>
| 5. | Bachelor of Electrical Engineering (Industrial Power)
To produce engineers who have competency in the field of Industrial Power.

Bachelor of Electrical Engineering (Control, Instrumentation & Automation)
To produce engineers who have competency in the field of Control, Instrumentation and Automation.

Bachelor of Electrical Engineering (Power Electronics & Drives)
To produce engineers who have competency in the field of Power Electronics and Drives.

Bachelor of Mechatronics Engineering
To produce engineers who have competency in the field of Mechatronics. |
Programme Outcome (PO) are statements describing what students are expected to know and be able to perform or attain by the time of graduation. These are related to the Knowledge (K), Skills (S), and Attitude (A) that students acquire throughout the programme.

Below is the list of Programme Outcomes for Faculty of Electrical Engineering’s Bachelor Programme:

<table>
<thead>
<tr>
<th>NO</th>
<th>PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ability to apply fundamental knowledge of mathematics, sciences, electrical and/or mechatronics engineering. (K,A)</td>
</tr>
<tr>
<td>2.</td>
<td>Ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability. (K,S,A)</td>
</tr>
<tr>
<td>3.</td>
<td>Ability to design and conduct experiments, as well as to analyze and interpret data for practice and applications. (K,S)</td>
</tr>
<tr>
<td>4.</td>
<td>Ability to identify, formulate and solve engineering problems. (K)</td>
</tr>
<tr>
<td>5.</td>
<td>Ability to use engineering tools necessary for engineering practices. (S)</td>
</tr>
<tr>
<td>6.</td>
<td>Ability to practice professional and ethical conduct. (K,A)</td>
</tr>
<tr>
<td>7.</td>
<td>Ability to communicate effectively. (A)</td>
</tr>
<tr>
<td>8.</td>
<td>Ability to function in a team effectively with the capacity to be a leader. (A)</td>
</tr>
<tr>
<td>9.</td>
<td>Ability to undertake lifelong learning. (A)</td>
</tr>
<tr>
<td>10.</td>
<td>Ability to identify fundamental entrepreneurship skills as applied in the engineering profession. (K)</td>
</tr>
<tr>
<td>11.</td>
<td>Ability to have knowledge of contemporary issues. (K)</td>
</tr>
</tbody>
</table>
BACHELOR OF ELECTRICAL ENGINEERING (INDUSTRIAL POWER) - BEKP
Bachelor of Electrical Engineering (Industrial Power) involves the areas connected to the electricity system aspects such as generation, transmission, power distribution, power system protection, electrical energy, load management, including regulatory affairs and energy components such as circuit breakers, transformer control equipment and so on.

This course would take four (4) years minimum and consist of at least 138 credit hours. The course will emphasize on Electrical Engineering and specialized knowledge of Industrial Power Engineering with the composition of the credits as follows:

<table>
<thead>
<tr>
<th></th>
<th>Credit Hour</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory University Courses</td>
<td>22 - 23</td>
<td>16% - 17%</td>
</tr>
<tr>
<td>Core Programme</td>
<td>86</td>
<td>62%</td>
</tr>
<tr>
<td>Core Course & Elective</td>
<td>30</td>
<td>22%</td>
</tr>
</tbody>
</table>

This course will be conducted with approximately 80% of contact hours that emphasize theory and the remainder 20% meeting hour, involving the practical / laboratory experiments, computer-aided learning, and Problem Based Learning (PBL). It also encourages active and cooperative learning activities other than carrying out assignments, job workshops, industrial training and one final year project based on industrial problem.
CURRICULUM STRUCTURE - BEKP

<table>
<thead>
<tr>
<th>COURSE TYPE</th>
<th>SEMESTER 1</th>
<th>SEMESTER 2</th>
<th>SEMESTER 3</th>
<th>SEMESTER 4</th>
<th>SEMESTER KHAS 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE PROGRAMME (P)</td>
<td>BEKA 1123</td>
<td>BEKA 1233</td>
<td>BEKA 2333</td>
<td>BEKA 2453</td>
<td>BEKU 2432</td>
</tr>
<tr>
<td></td>
<td>ALGEBRA & CALCULUS</td>
<td>ENGINEERING</td>
<td>DIFFERENTIAL</td>
<td>STATISTICS & NUMERICAL</td>
<td>ENGINEERING</td>
</tr>
<tr>
<td></td>
<td>BEKE 1123</td>
<td>BEKU 1243</td>
<td>BEKU 2333</td>
<td>BEKP 2453</td>
<td>PRACTICE REPORT</td>
</tr>
<tr>
<td></td>
<td>ELECTRONICS & SYSTEMS</td>
<td>ELECTRONICS</td>
<td>ELECTRICAL</td>
<td>ELECTROMAGNETIC</td>
<td>THEORY</td>
</tr>
<tr>
<td></td>
<td>BEKC 1123</td>
<td>BEKU 1243</td>
<td>BEKU 2323</td>
<td>BEKU 2433</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INSTRUMENTATION & MEASUREMENT</td>
<td>ANALOGUE ELECTRONICS</td>
<td>ELECTRICAL</td>
<td>SIGNAL & TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1123</td>
<td>BITG 1233</td>
<td>BMCG 2343</td>
<td>BEKP 2443</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL CIRCUIT I</td>
<td>COMPUTER PROGRAMMING</td>
<td>INTRODUCTION TO</td>
<td>INTRODUCTION TO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1121</td>
<td>BEKU 1221</td>
<td>MECHANICAL ENGINEERING</td>
<td>POWER ENGINEERING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BASIC ELECTRICAL & ELECTRONIC LAB</td>
<td>ELECTRICAL ELECTRONICS LAB</td>
<td>ELECTRICAL TECHNOLOGY LAB</td>
<td>ENGINEERING LAB I</td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CORE COURSE (K) & ELECTIVE (E)</th>
<th>SEMESTER BREAK</th>
<th>LONG SEMESTER BREAK</th>
<th>SEMESTER BREAK</th>
<th>SEMESTER BREAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPULSORY UNIVERSITY (W)</td>
<td>BLHW 1013*</td>
<td>BLHW 2403</td>
<td>BLHW 3403</td>
<td>BLHW 1702</td>
</tr>
<tr>
<td></td>
<td>FOUNDATION</td>
<td>TECHNICAL</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION</td>
<td>TITAS</td>
</tr>
<tr>
<td></td>
<td>ENGLISH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHL 1XXX**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>THIRD LANGUAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKXX XXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO-CURRICULUM II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKXX XXXX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO-CURRICULUM I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>3 (4*)</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

| TOTAL CREDIT HOUR SEMESTER | 16 | 17 | 16 | 17 | 4 |

* THE SUBJECT IS COMPULSORY FOR THE MUET WITH BAND 2 OR BELOW AS (HW)
**THE SUBJECT CAN BE TAKEN IN OTHER SEMESTER IF OFFERED
ONLY 2 CREDIT HOURS WILL BE COUNTED FOR SUKSIS AS THE CO-CURRICULUM OPTIONS
<table>
<thead>
<tr>
<th>COURSE TYPE</th>
<th>SEMESTER 5</th>
<th>YEAR 3</th>
<th>SEMESTER 6</th>
<th>SPECIAL SEM 2</th>
<th>SEMESTER 7</th>
<th>YEAR 4</th>
<th>SEMESTER 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE PROGRAMME (P)</td>
<td>BEKE 3543</td>
<td>BEKU 3643</td>
<td>BEKU 3696</td>
<td>BEKU 4883</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER ELECTRONICS</td>
<td>COMMUNICATION SYSTEM</td>
<td>INDUSTRIAL TRAINING</td>
<td>ENGINEERING ETHICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3543</td>
<td></td>
<td></td>
<td>BEKU 4873</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICROPROCESSOR</td>
<td></td>
<td></td>
<td>ENGINEERING ELECTRICITY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 3533</td>
<td></td>
<td></td>
<td>BEKU 4873</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL MACHINES</td>
<td></td>
<td></td>
<td>HIGH VOLTAGE ENGINEERING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3533</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION TO CONTROL SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INSTRUMENTATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>15</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORE COURSE (K)</td>
<td>BEKU 3531</td>
<td>BEKE 3543</td>
<td>BEKU 3643</td>
<td>BEKU 3696</td>
<td>BEKU 4883</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL ENGINEERING LAB II</td>
<td>CONTROL SYSTEM ENGINEERING</td>
<td>FINAL YEAR PROJECT I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 3533</td>
<td>ELECTRICAL ELECTRICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRIVE & ACTUATORS</td>
<td>ELECTRICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 3673</td>
<td>DRIVE & ACTUATORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER SYSTEM ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 3563</td>
<td>POWER SYSTEM ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEK 3631</td>
<td>DISTRIBUTION SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INDUSTRIAL POWER ENGINEERING LAB I</td>
<td>INDUSTRIAL POWER ENGINEERING LAB I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>1</td>
<td>10</td>
<td>12</td>
<td>7</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTIVE (E)</td>
<td>BKX XXXX CO-CURRICULUM (SUKSIS)</td>
<td>BLHC 4062 PROJECT MANAGEMENT</td>
<td>BLHW 2712 EHTNIC RELATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPULSORY UNIVERSITY (W)</td>
<td>BKX XXXX CO-CURRICULUM (SUKSIS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOUR SEMESTER</td>
<td>16</td>
<td>15</td>
<td>6</td>
<td>16</td>
<td>15</td>
<td>138</td>
<td></td>
</tr>
</tbody>
</table>
Credit Hour and Pre-Requisite - BEKP

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CODE</th>
<th>SUBJECT</th>
<th>CATEGORY</th>
<th>CREDIT HOUR</th>
<th>PRE-REQUISITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1013</td>
<td>FOUNDATION ENGLISH*</td>
<td>W</td>
<td>2 (3*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHL 1XXX</td>
<td>THIRD LANGUAGE</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM I</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 1123</td>
<td>ELECTRONIC DEVICES</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 1123</td>
<td>INSTRUMENTATION & MEASUREMENT</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1123</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1121</td>
<td>BASIC ELECTRICAL & ELECTRONIC LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 2403</td>
<td>TECHNICAL ENGLISH</td>
<td>W</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM II</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
<td>P</td>
<td>3</td>
<td>BEKE 1123</td>
</tr>
<tr>
<td></td>
<td>BEKU 1243</td>
<td>DIGITAL ELECTRONICS & SYSTEM</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 1243</td>
<td>ANALOGUE ELECTRONICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BITG 1233</td>
<td>COMPUTER PROGRAMMING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1221</td>
<td>ANALOGUE & DIGITAL ELECTRONICS LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 3403</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION</td>
<td>W</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 2333</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td>P</td>
<td>3</td>
<td>BEKU 1123</td>
</tr>
<tr>
<td></td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>P</td>
<td>3</td>
<td>BEKU 1123</td>
</tr>
<tr>
<td></td>
<td>BMCG 2343</td>
<td>INTRODUCTION TO MECHANICAL ENGINEERING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 2321</td>
<td>ELECTRICAL TECHNOLOGY LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1702</td>
<td>TITAS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 3012</td>
<td>COMPULSORY ELECTIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TECHNOCRAT COMMUNICATION SKILLS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CODE</th>
<th>SUBJECT</th>
<th>CATEGORY</th>
<th>CREDIT HOUR</th>
<th>PRE-REQUISITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1013</td>
<td>FOUNDATION ENGLISH*</td>
<td>W</td>
<td>2 (3*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHL 1XXX</td>
<td>THIRD LANGUAGE</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM I</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 1123</td>
<td>ELECTRONIC DEVICES</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 1123</td>
<td>INSTRUMENTATION & MEASUREMENT</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1123</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1121</td>
<td>BASIC ELECTRICAL & ELECTRONIC LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 2403</td>
<td>TECHNICAL ENGLISH</td>
<td>W</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM II</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
<td>P</td>
<td>3</td>
<td>BEKE 1123</td>
</tr>
<tr>
<td></td>
<td>BEKU 1243</td>
<td>DIGITAL ELECTRONICS & SYSTEM</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 1243</td>
<td>ANALOGUE ELECTRONICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BITG 1233</td>
<td>COMPUTER PROGRAMMING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1221</td>
<td>ANALOGUE & DIGITAL ELECTRONICS LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 3403</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION</td>
<td>W</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 2333</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td>P</td>
<td>3</td>
<td>BEKU 1123</td>
</tr>
<tr>
<td></td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>P</td>
<td>3</td>
<td>BEKU 1123</td>
</tr>
<tr>
<td></td>
<td>BMCG 2343</td>
<td>INTRODUCTION TO MECHANICAL ENGINEERING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 2321</td>
<td>ELECTRICAL TECHNOLOGY LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1702</td>
<td>TITAS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 3012</td>
<td>COMPULSORY ELECTIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TECHNOCRAT COMMUNICATION SKILLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
<td>CATEGORY</td>
<td>CREDIT HOUR</td>
<td>PRE- REQUISITE</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>BLHC 4012</td>
<td>OR ORGANIZATIONAL COMMUNICATION OR</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 4022</td>
<td>NEGOTIATION SKILLS OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 4032</td>
<td>CRITICAL CREATIVE THINKING SKILLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 2453</td>
<td>STATISTICS & NUMERICAL METHODS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 2453</td>
<td>ELECTROMAGNETIC THEORY</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 2433</td>
<td>SIGNAL & SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 2443</td>
<td>INTRODUCTION TO POWER ENGINEERING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 2431</td>
<td>ELECTRICAL ENGINEERING LABORATORY I</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SHORT</td>
<td>BEKU 2432</td>
<td>ENGINEERING PRACTICE REPORT</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SEMESTER</td>
<td>BEKU 2422</td>
<td>ENGINEERING PRACTICE</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 3543</td>
<td>POWER ELECTRONICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3543</td>
<td>MICROPROCESSOR</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 3533</td>
<td>ELECTRICAL MACHINES</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3533</td>
<td>INTRODUCTION TO CONTROL SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3563</td>
<td>INSTRUMENTATION</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 3531</td>
<td>ELECTRICAL ENGINEERING LABORATORY II</td>
<td>K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER</td>
<td>BLHC 4062</td>
<td>PROJECT MANAGEMENT</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BEKC 3633</td>
<td>COMMUNICATION SYSTEMS</td>
<td>P</td>
<td>3</td>
<td>BEKC 3533</td>
</tr>
<tr>
<td></td>
<td>BEKC 3643</td>
<td>CONTROL SYSTEM ENGINEERING</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 3643</td>
<td>ELECTRICAL DRIVE & ACTUATORS</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 3673</td>
<td>POWER SYSTEM ANALYSIS</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 3631</td>
<td>INDUSTRIAL POWER ENGINEERING LABORATORY I</td>
<td>K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SHORT</td>
<td>BEKU 3696</td>
<td>INDUSTRIAL TRAINING</td>
<td>P</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SEMESTER</td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BLHW 2712</td>
<td>ETHNIC RELATIONS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
<td>CATEGORY</td>
<td>CREDIT HOUR</td>
<td>PRE-REQUISITE</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>---</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>BLHW 1722</td>
<td>SCIENCE & TECHNOLOGY PHILOSOPHY OR MALAYSIA SOCIO-ECONOMIC DEVELOPMENT</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1732</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 4753</td>
<td>POWER GENERATION & TRANSMISSION</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 4783</td>
<td>DISTRIBUTION SYSTEMS DESIGN</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 4763</td>
<td>ENERGY EFFICIENCY</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 4792</td>
<td>FINAL YEAR PROJECT I</td>
<td>K</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 4731</td>
<td>INDUSTRIAL POWER ENGINEERING LABORATORY II</td>
<td>K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 8</td>
<td>BLHC 4042</td>
<td>ENTREPRENEURSHIP & NEW BUSINESS SKILLS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 4883</td>
<td>ENGINEERING ETHICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 4883</td>
<td>HIGH VOLTAGE ENGINEERING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 4873</td>
<td>POWER SYSTEM PROTECTION</td>
<td>K</td>
<td>3</td>
<td>BEKU 4792</td>
</tr>
<tr>
<td></td>
<td>BEKU 4894</td>
<td>FINAL YEAR PROJECT II</td>
<td>K</td>
<td>4</td>
<td>BEKU 4792</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINIMUM TOTAL CREDIT</td>
<td></td>
<td>138</td>
<td></td>
</tr>
</tbody>
</table>

P = Core Program, K = Core Course, E = Elective, W = Compulsory University
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Subject</th>
<th>Face-to-Face Learning</th>
<th>Self Learning Activities</th>
<th>Formal Assessment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teacher Centered (TC)</td>
<td>Student Centered Learning (SCL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
<td>PBL / Other SCL Activities</td>
</tr>
<tr>
<td>1</td>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKU 1123</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKE 1123</td>
<td>ELECTRONIC DEVICES</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKC 1123</td>
<td>INSTRUMENTATION & MEASUREMENT</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKU1121</td>
<td>BASIC ELECTRICAL & ELECTRONIC LABORATORY</td>
<td>36</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BLHW 1013</td>
<td>FOUNDATION ENGLISH*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHL 1XXX</td>
<td>THIRD LANGUAGE**</td>
<td>28</td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM I</td>
<td>28</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKE 1133</td>
<td>ELECTRONIC ANALOGUE</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKU 1223</td>
<td>DIGITAL ELECTRONIC & SYSTEM</td>
<td>38</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>BITG 1233</td>
<td>COMPUTER PROGRAMMING</td>
<td>28</td>
<td></td>
<td>28</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>BEKU 1221</td>
<td>ANALOG AND DIGITAL ELECTRONIC LABORATORY</td>
<td>36</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BLHW 2403</td>
<td>TECHNICAL ENGLISH*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM II</td>
<td>28</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>BEKA 2333</td>
<td>DIFERENTIAL EQUATIONS</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td>38</td>
<td>12</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Lectures</td>
<td>Practical</td>
<td>Theory</td>
<td>Total</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>BEKU 2333</td>
<td>INTRODUCTION TO MECHANICAL ENGINEERING</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BEKU 2321</td>
<td>ELECTRICAL TECHNOLOGY LAB</td>
<td></td>
<td>36</td>
<td>4</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>BLHW 3403</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEKA 2453</td>
</tr>
<tr>
<td>BEKP 2453</td>
</tr>
<tr>
<td>BEKC 2433</td>
</tr>
<tr>
<td>BEKP 2443</td>
</tr>
<tr>
<td>BEKU 2431</td>
</tr>
<tr>
<td>BLHW 1702</td>
</tr>
<tr>
<td>BLHC XXXX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEKU 2432</td>
</tr>
<tr>
<td>BEKU 2422</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEKE 3543</td>
</tr>
<tr>
<td>BEKC 3543</td>
</tr>
<tr>
<td>BEKE 3533</td>
</tr>
<tr>
<td>BEKC 3533</td>
</tr>
<tr>
<td>BEK 3563</td>
</tr>
<tr>
<td>BEKU 2431</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEKC 3633</td>
</tr>
<tr>
<td>BEKC 3643</td>
</tr>
<tr>
<td>BEKE 3653</td>
</tr>
<tr>
<td>BEKP 3673</td>
</tr>
<tr>
<td>BEKP 3631</td>
</tr>
<tr>
<td>BACA 4132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEKU 3996</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEKU 4732</td>
</tr>
<tr>
<td>Course Code</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>BEKP 4753</td>
</tr>
<tr>
<td>BEKP 4783</td>
</tr>
<tr>
<td>BEKP 4763</td>
</tr>
<tr>
<td>BEKP 4731</td>
</tr>
<tr>
<td>BLHW 2712</td>
</tr>
<tr>
<td>BLHW 1722</td>
</tr>
<tr>
<td>BLHW 1732</td>
</tr>
<tr>
<td>BEKU 4834</td>
</tr>
<tr>
<td>BEKU 4883</td>
</tr>
<tr>
<td>BEKP 4883</td>
</tr>
<tr>
<td>BEKP 4873</td>
</tr>
<tr>
<td>BACA 4042</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The SLT estimation is to be advised
BACHELOR OF ELECTRICAL ENGINEERING
(CONTROL, INSTRUMENTATION & AUTOMATION) - BEKC
Bachelor of Electrical Engineering (Control, Instrumentation & Automation) involves wide range areas in discussing methods of production or products and equipment. Control engineering, instrumentation and automation is a combination of three areas, namely, Control Engineering, Instrumentation Engineering and Automation Engineering. The combination of these three areas will result in a complex system. It includes analysis and design of control systems, robotics, and exposure to the FMS system and automation.

This course would take four (4) years minimum and consist of at least 138 credit hours. The course will emphasize on Electrical Engineering with specialization in Control Engineering, Instrumentation & Automation with the composition of the credits are as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hour</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory University Courses</td>
<td>22 - 23</td>
<td>16% - 17%</td>
</tr>
<tr>
<td>Core Programme</td>
<td>86</td>
<td>62%</td>
</tr>
<tr>
<td>Core Course & Elective</td>
<td>30</td>
<td>22%</td>
</tr>
</tbody>
</table>

This course will be conducted with approximately 80% of contact hours that emphasize theory and the remainder 20% meeting hour, involving the practical / laboratory experiments, computer-aided learning, and Problem Based Learning (PBL). It also encourages active and cooperative learning activities other than carrying out assignments, job workshops, industrial training and one final year project based on industrial problem.
CURRICULUM STRUCTURE - BEKC

<table>
<thead>
<tr>
<th>TYPE COURSE</th>
<th>SEMESTER 1</th>
<th>SEMESTER 2</th>
<th>SEMESTER 3</th>
<th>SEMESTER 4</th>
<th>SHORT SEMESTER 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE PROGRAM (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
<td>BEKA 2333</td>
<td>DIFFERENTIAL EQUATIONS</td>
</tr>
<tr>
<td>BEKE 1123</td>
<td>ELECTRONICS DEVICES</td>
<td>BEKE 1243</td>
<td>DIGITAL ELECTRONIC & SYSTEMS</td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
</tr>
<tr>
<td>BEKC 1123</td>
<td>INSTRUMENTATION & MEASUREMENT</td>
<td>BEKE 1243</td>
<td>ANALOGUE ELECTRONICS</td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
</tr>
<tr>
<td>Beks 1123</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>Beks 1233</td>
<td>COMPUTER PROGRAMMING</td>
<td>BMCG 2343</td>
<td>INTRODUCTION TO MECHANICAL ENGINEERING</td>
</tr>
<tr>
<td>Beks 1121</td>
<td>BASIC ELECTRICAL & ELECTRONIC LABORATORY</td>
<td>Beks 1221</td>
<td>ANALOGUE & DIGITAL ELECTRONIC LABORATORY</td>
<td>BEKP 2443</td>
<td>INTRODUCTION TO POWER ENGINEERING</td>
</tr>
<tr>
<td>CREDIT HOUR</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>SEMESTER BREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORE COURSE (K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTIVE (E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMESTER BREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPULSORY UNIVERSITY (W)</td>
<td>BLHW 1013</td>
<td>BLHW 2403</td>
<td>BLHW 3403</td>
<td>BLHW 1702</td>
<td>TITAS</td>
</tr>
<tr>
<td>FOUNDATION ENGLISH OR BLHL 1XXX** THIRD LANGUAGE</td>
<td>TECHNICAL ENGLISH</td>
<td>BKKX XXXX CO-CURRICULUM II</td>
<td>BKKX XXXX CO-CURRICULUM (SUKSIS)</td>
<td>BKKX XXXX CO-CURRICULUM (SUKSIS)</td>
<td></td>
</tr>
<tr>
<td>BKKX XXXX CO-CURRICULUM I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR</td>
<td>3 (4*)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SEMESTER BREAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOUR SEMESTER</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>4</td>
</tr>
</tbody>
</table>

* THE SUBJECT IS COMPULSORY FOR THE MUET WITH BAND 2 OR BELOW AS (HW)
THE SUBJECT CAN BE TAKEN IN OTHER SEMESTER IF OFFERED

* ONLY 2 CREDIT HOURS WILL BE COUNTED FOR SUKSIS AS THE CO-CURRICULUM OPTIONS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>COURSE</th>
<th>YEAR 3</th>
<th>SHORT SEMESTER 2</th>
<th>YEAR 4</th>
<th>SEMESTER 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE</td>
<td>PROGRAM (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 3543</td>
<td>BEKU 3696</td>
<td>INDUSTRIAL TRAINING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3543</td>
<td>BEKC 3633</td>
<td>COMMUNICATION SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3533</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL MACHINES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3533</td>
<td>BEKC 3563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION TO CONTROL SYSTEMS</td>
<td>INSTRUMENTATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>15</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>86</td>
</tr>
<tr>
<td>CORE COURSES (K) & ELECTIVES (E)</td>
<td>BEKU 3531</td>
<td>BEKU 3531</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER ELECTRONICS</td>
<td>CONTROL SYSTEM ENGINEERING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICROPROCESSOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 3533</td>
<td>BEKE 3533</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL DRIVES & ACTUATORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 3673</td>
<td>BEKU 4793</td>
<td>PLC & AUTOMATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWER SYSTEM ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3631</td>
<td>BEKC 4793</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONTROL, INSTR, AUTOMATION ENGINEERING LABORATORY I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>1</td>
<td>10</td>
<td>12</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>COMPULSORY UNIVERSITY (W)</td>
<td>BKKX XXXX* CO-CURRICULUM (SUKSIS)</td>
<td>BLHC 4062</td>
<td>BLHW 1722</td>
<td>BLHC 4042</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROJECT MANAGEMENT</td>
<td>SCIENCE & TECHNOLOGY PHILOSOPHY</td>
<td>ENTREPRENEURSHIP & NEW BUSINESS SKILLS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX* CO-CURRICULUM (SUKSIS)</td>
<td>BLHW 1732</td>
<td>MALAYSIA SOCIO-ECONOMIC DEVELOPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BLHW 2712</td>
<td>ETHNIC RELATIONS</td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOUR SEMESTER</td>
<td>16</td>
<td>15</td>
<td>6</td>
<td>15</td>
<td>138</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
<td>CATEGORY</td>
<td>CREDIT HOUR</td>
<td>PRE- REQUISITE</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SEMESTER 1</td>
<td>BLHW 1013</td>
<td>FOUNDATION ENGLISH OR THIRD LANGUAGE</td>
<td>W</td>
<td>2 (3*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHL 1XX2</td>
<td>FOUNDATION ENGLISH OR THIRD LANGUAGE</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKXX XXXX</td>
<td>CO-CURRICULUM I</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 1123</td>
<td>ELECTRONIC DEVICES</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 1123</td>
<td>INSTRUMENTATION & MEASUREMENT</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1123</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1121</td>
<td>BASIC ELECTRICAL & ELECTRONIC LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 2</td>
<td>BLHW 2403</td>
<td>TECHNICAL ENGLISH</td>
<td>W</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKXX XXXX1</td>
<td>CO-CURRICULUM II</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1243</td>
<td>DIGITAL ELECTRONICS & SYSTEM</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 1243</td>
<td>ANALOGUE ELECTRONICS</td>
<td>P</td>
<td>3</td>
<td>BEKE 1123</td>
</tr>
<tr>
<td></td>
<td>BITG 1233</td>
<td>COMPUTER PROGRAMMING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1221</td>
<td>ANALOGUE & DIGITAL ELECTRONICS LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 3</td>
<td>BLHW 3403</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION</td>
<td>W</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 2333</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>P</td>
<td>3</td>
<td>BEKU 1123</td>
</tr>
<tr>
<td></td>
<td>BMCG 2343</td>
<td>INTRODUCTION TO MECHANICAL ENGINEERING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 2321</td>
<td>ELECTRICAL TECHNOLOGY LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 4</td>
<td>BLHW 1702</td>
<td>TITAS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 3012</td>
<td>COMPULSORY ELECTIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
<td>CATEGORY</td>
<td>CREDIT HOUR</td>
<td>PRE- REQUISITE</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>BLHC 4012</td>
<td>ORGANIZATIONAL COMMUNICATION OR</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 4022</td>
<td>NEGOTIATION SKILLS OR</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 4032</td>
<td>CRITICAL CREATIVE THINKING SKILLS OR</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 2453</td>
<td>STATISTICS & NUMERICAL METHODS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 2453</td>
<td>ELECTROMAGNETIC THEORY</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 2433</td>
<td>SIGNAL & SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 2443</td>
<td>INTRODUCTION TO POWER ENGINEERING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 2431</td>
<td>ELECTRICAL ENGINEERING LABORATORY I</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SHORT</td>
<td>BEKU 2432</td>
<td>ENGINEERING PRACTICE REPORT</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SEMESTER I</td>
<td>BEKU 2422</td>
<td>ENGINEERING PRACTICE</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 5</td>
<td>BEKE 3543</td>
<td>POWER ELECTRONICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3543</td>
<td>MICROPROCESSOR</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 3533</td>
<td>ELECTRICAL MACHINES</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3533</td>
<td>INTRODUCTION TO CONTROL SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3563</td>
<td>INSTRUMENTATION</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 3531</td>
<td>ELECTRICAL ENGINEERING LABORATORY II</td>
<td>K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 6</td>
<td>BACA 4132</td>
<td>PROJECT MANAGEMENT</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3633</td>
<td>COMMUNICATION SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3643</td>
<td>CONTROL SYSTEM ENGINEERING</td>
<td>K</td>
<td>3</td>
<td>BEKC 3533</td>
</tr>
<tr>
<td></td>
<td>BEKU 3643</td>
<td>ELECTRICAL DRIVE & ACTUATORS</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 3673</td>
<td>POWER SYSTEM ANALYSIS</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3631</td>
<td>CONTROL, INSTRUMENTATION & AUTOMATION ENGINEERING</td>
<td>K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SHORT</td>
<td>BEKU 3696</td>
<td>INDUSTRIAL TRAINING</td>
<td>P</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SEMESTER II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits:
- Semester I: 17
- Semester II: 4
- Semester 5: 16
- Semester 6: 15
- Total: 62
<table>
<thead>
<tr>
<th>SEMESTER 7</th>
<th>CODE</th>
<th>SUBJECT</th>
<th>CATEGORY</th>
<th>CREDIT HOUR</th>
<th>PRE-REQUISITE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLHW 2712</td>
<td>ETHNIC RELATIONS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1722</td>
<td>SCIENCE & TECHNOLOGY PHILOSOPHY OR MALAYSIA SOCIO-ECONOMIC DEVELOPMENT</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 4763</td>
<td>ROBOTICS OR INDUSTRIAL CONTROL & INSTRUMENTATION</td>
<td>E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 4763</td>
<td>CONTROL, INSTRUMENTATION & AUTOMATION ENGINEERING LABORATORY II</td>
<td>K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 4783</td>
<td>DIGITAL CONTROL SYSTEM</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 4753</td>
<td>PLC & AUTOMATION</td>
<td>K</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 4792</td>
<td>FINAL YEAR PROJECT I</td>
<td>K</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 4731</td>
<td>CONTROL, INSTRUMENTATION & AUTOMATION ENGINEERING LABORATORY II</td>
<td>K</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 8</td>
<td>BLHC 4042</td>
<td>ENTREPRENEURSHIP & NEW BUSINESS SKILLS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 4883</td>
<td>ENGINEERING ETHICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 4883</td>
<td>HIGH VOLTAGE ENGINEERING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 4883</td>
<td>MODERN MANUFACTURING SYSTEMS OR ARTIFICIAL INTELLIGENCE</td>
<td>E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 4894</td>
<td>FINAL YEAR PROJECT II</td>
<td>K</td>
<td>4</td>
<td>BEKU 4792</td>
</tr>
</tbody>
</table>

TOTAL

<table>
<thead>
<tr>
<th>SEMESTER 7</th>
<th>SEMESTER 8</th>
<th>MINIMUM TOTAL CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>TOTAL</td>
<td>138</td>
</tr>
</tbody>
</table>

P = Core Program, K = Core Course, E = Elective, W = Compulsory University
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Subject</th>
<th>Face-to-Face Learning</th>
<th>Student Centered Learning (SCL)</th>
<th>Self Learning Activities</th>
<th>Formal Assessment</th>
<th>Total SLT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teacher Centered (TC)</td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
<td>PBL / Other SCL Activities</td>
</tr>
<tr>
<td>1</td>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKU 1123</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKE 1123</td>
<td>ELECTRONIC DEVICES</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKC 1323</td>
<td>INSTRUMENTATION & MEASUREMENT</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKU1121</td>
<td>BASIC ELECTRICAL & ELECTRONIC LABORATORY</td>
<td>36</td>
<td>28</td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>BLHW 1013</td>
<td>FOUNDATION ENGLISH*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHL 1XXX</td>
<td>THIRD LANGUAGE**</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>BKKX XXX</td>
<td>CO-CURRICULUM I</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKE 1233</td>
<td>ANALOG ELECTRONICS</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BITG 1233</td>
<td>COMPUTER PROGRAMMING</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>BEKU 1223</td>
<td>DIGITAL ELECTRONIC & SYSTEM</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>BEKU 1221</td>
<td>ANALOG & DIGITAL ELECTRONICS LABORATORY</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 2403</td>
<td>TECHNICAL ENGLISH*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM II</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BEKA 2333</td>
<td>DIFERENTIAL EQUATIONS</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>BMCG 2343</td>
<td>INTRODUCTION TO MECHANICAL ENGINEERING</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Level</td>
<td>Ou</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>-------</td>
<td>---</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 3403</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION*</td>
<td>4</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKA 2453</td>
<td>STATISTICS AND NUMERICAL METHOD</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKP 2453</td>
<td>ELECTROMAGNETIC THEORY</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKC 2433</td>
<td>SIGNAL AND SYSTEMS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKP 2443</td>
<td>INTRODUCTION TO POWER ENGINEERING</td>
<td>38</td>
<td>12</td>
<td>75</td>
<td>5</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>BEKU 2431</td>
<td>ELECTRICAL ENGINEERING</td>
<td>36</td>
<td></td>
<td>4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>BLHC XXXX</td>
<td>COMPULSORY ELECTIVE COURSES</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>BLHW 1702</td>
<td>TITAS</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>BEKU 2432</td>
<td>ENGINEERING PRACTICE REPORT</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 2422</td>
<td>ENGINEERING PRACTICE</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKE 3543</td>
<td>POWER ELECTRONICS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKC 3543</td>
<td>MICROPROCESSOR</td>
<td>38</td>
<td>12</td>
<td>75</td>
<td>5</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>BEKE 3533</td>
<td>ELECTRICAL MACHINE</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKC 3533</td>
<td>INTRODUCTION TO CONTROL SYSTEM</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKC 3563</td>
<td>INSTRUMENTATION</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKC 3531</td>
<td>ELECTRICAL ENGINEERING LABORATORY 2</td>
<td>36</td>
<td></td>
<td>4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>BEKC 3633</td>
<td>COMMUNICATION SYSTEM</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKC 3643</td>
<td>CONTROL SYSTEMS ENGINEERING</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKE 3653</td>
<td>ELECTRICAL DRIVES & ACTUATORS</td>
<td>38</td>
<td>12</td>
<td>75</td>
<td>5</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>BEKP 3673</td>
<td>POWER SYSTEM ANALYSIS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKC 3631</td>
<td>CONTROL INSTRUMENTATION & AUTOMATION ENGINEERING</td>
<td>36</td>
<td></td>
<td>4</td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>BACA 4062</td>
<td>PROJECT MANAGEMENT</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>BEKU 3696</td>
<td>INDUSTRIAL TRAINING</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>BEKC 4763</td>
<td>INDUSTRI CONTROL & INSTRUMENTATION</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Lectures</td>
<td>Tutorials</td>
<td>Practicals</td>
<td>Theory</td>
<td>Total</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>BEKM 4763</td>
<td>ROBOTICS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKC 4763</td>
<td>DIGITAL CONTROL SYSTEM</td>
<td>84</td>
<td>5</td>
<td>1</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 4792</td>
<td>FINAL YEAR PROJECT I</td>
<td>38</td>
<td>12</td>
<td>75</td>
<td>5</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>BEKC 4731</td>
<td>CONTROL, INSTRUMENTATION & AUTOMATION ENGINEERING</td>
<td>36</td>
<td>4</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 1722</td>
<td>SCIENCE AND TECHNOLOGY PHILOSOPHY</td>
<td>28</td>
<td>48</td>
<td>4</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 1732</td>
<td>MALAYSIA’S SOCIO-ECONOMIC DEVELOPMENT</td>
<td>28</td>
<td>48</td>
<td>4</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 2712</td>
<td>ETHNIC RELATIONS</td>
<td>28</td>
<td>48</td>
<td>4</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 4984</td>
<td>FINAL YEAR PROJECT II</td>
<td>174</td>
<td>5</td>
<td>1</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKP 7883</td>
<td>HIGH VOLTAGE ENGINEERING</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKU 4883</td>
<td>ENGINEERING ETHICS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKU 4883</td>
<td>ARTIFICIAL INTELLIGENCE</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>BEKU 4873</td>
<td>MODERN MANUFACTURING SYSTEMS</td>
<td>28</td>
<td>48</td>
<td>4</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL HOURS</td>
<td></td>
<td>1460</td>
<td>96</td>
<td>776</td>
<td>330</td>
<td>2563</td>
<td>185</td>
</tr>
</tbody>
</table>

* The SLT estimation is to be advised
BACHELOR OF ELECTRICAL ENGINEERING (POWER ELECTRONIC & DRIVES) - BEKE
Bachelor of Electrical Engineering (Power Electronic & Drives) aims to produce graduates with technical knowledge and skills in the area of power electronics and drives. This field is growing rapidly in line with the development of electrical and electronic engineering technologies based on electronic power conversion technology and control techniques. This technology is used to design and produce efficient and high performance, small size and environmentally friendly product. Application of power electronics and drive technology involves several disciplines of analogue and digital systems, power converter, sensor, various types of electric motors, interfacing, computer and embedded controller program.

This course would take four (4) years minimum and consist of at least 138 credit hours. The courses will emphasize on Electrical Engineering with specialization in Power Electronics & Drives with the composition of the credits are as follows:

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credit Hour</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory University Courses</td>
<td>22 - 23</td>
<td>16% - 17%</td>
</tr>
<tr>
<td>Core Programme</td>
<td>86</td>
<td>62%</td>
</tr>
<tr>
<td>Core Course & Elective</td>
<td>30</td>
<td>22%</td>
</tr>
</tbody>
</table>

This course will be conducted with approximately 80% of contact hours that emphasize theory and the remainder 20% meeting hour, involving the practical / laboratory experiments, computer-aided learning, and Problem Based Learning (PBL). It also encourages active and cooperative learning activities other than carrying out assignments, job workshops, industrial training and one final year project based on industrial problem.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>COURSE CONTENT</th>
<th>SEMESTER 1</th>
<th>SEMESTER 2</th>
<th>SEMESTER 3</th>
<th>SEMESTER 4</th>
<th>SEMESTER KHAS 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE PROGRAM (P)</td>
<td>BEKA 1123 ALGEBRA & CALCULUS</td>
<td>BEKA 1233 ENGINEERING MATHEMATICS</td>
<td>BEKA 2333 DIFFERENTIAL EQUATIONS</td>
<td>BEKA 2453 STATISTICS & NUMERICAL METHODS</td>
<td>BEKU 2432 ENGINEERING PRACTICE REPORT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 1123 ELECTRONIC DEVICES</td>
<td>BEKU 1243 DIGITAL ELECTRONICS & SYSTEMS</td>
<td>BEKU 2333 ELECTRICAL CIRCUIT II</td>
<td>BEKP 2453 ELECTROMAGNETIC THEORY</td>
<td>BEKU 2422 ENGINEERING PRACTICE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1123 INSTRUMENTATION & MEASUREMENT</td>
<td>BEKE 1243 ANALOGUE ELECTRONIC</td>
<td>BEKP 2323 ELECTRICAL TECHNOLOGY</td>
<td>BEKC 2433 SIGNAL & SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1123 ELECTRICAL CIRCUIT I</td>
<td>BITG 1233 COMPUTER PROGRAMMING</td>
<td>BMCG 2343 INTRODUCTION TO MECHANICAL ENGINEERING</td>
<td>BEKP 2443 INTRODUCTION TO POWER ENGINEERING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1123 BASIC ELECTRICAL & ELECTRONICS LABORATORY</td>
<td>BEKU 1221 ANALOGUE & DIGITAL ELECTRONICS LABORATORY</td>
<td>BEKU 2321 ELECTRICAL TECHNOLOGY LABORATORY</td>
<td>BEKU 2431 ELECTRICAL ENGINEERING LABORATORY I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CREDIT HOUR SEMESTER</th>
<th>YEAR 1</th>
<th>SEMESTER BREAK</th>
<th>YEAR 2</th>
<th>SEMESTER BREAK</th>
<th>YEAR 3</th>
<th>SEMESTER BREAK</th>
<th>YEAR 4</th>
<th>SEMESTER BREAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Course</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| CREDIT HOUR SEMESTER | 16 | 17 | 16 | 17 | 17 | 4 | | |

THE SUBJECT IS COMPULSORY FOR THE MUET WITH BAND 2 OR BELOW AS (HW)

THE SUBJECT CAN BE TAKEN IN OTHER SEMESTER IF OFFERED

* ONLY 2 CREDIT HOURS WILL BE COUNTED FOR SUKSIS AS CO-CURRICULUM OPTION
<table>
<thead>
<tr>
<th>TYPE COURSE</th>
<th>YEAR 3</th>
<th>YEAR 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE PROGRAM (P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEMESTER 5</td>
<td>SEMESTER 6</td>
</tr>
<tr>
<td>BEKE 3543 POWER ELECTRONICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKC 3543 MICROPROCESSOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKE 3533 ELECTRICAL MACHINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKE 3553 INTRODUCTION TO CONTROL SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 3563 INSTRUMENTATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>CORE COURSE (K) & ELECTIVE (E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEMESTER 5</td>
<td>SEMESTER 6</td>
</tr>
<tr>
<td>BEKU 3531 ELECTRICAL ENGINEERING LABORATORY II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKE 3643 ELECTRICAL DRIVES & ACTUATOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKE 3663 POWER ELECTRONICS SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 3531 POWER ELECTRONICS & DRIVES LABORATORY I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>COMPULSORY (W)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEMESTER 5</td>
<td>SEMESTER 6</td>
</tr>
<tr>
<td>BKXX XXXX CO-CU (SUHIS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHC 4062 PROJECT MANAGEMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKXX XXXX CO-CU (SUHIS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL CREDIT HOUR SEMESTER</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>SEMESTER 1</td>
<td>BLHW 1013</td>
<td>FOUNDATION ENGLISH* OR</td>
</tr>
<tr>
<td></td>
<td>BLHL 1XXX</td>
<td>THIRD LANGUAGE</td>
</tr>
<tr>
<td></td>
<td>BKKX XXX1</td>
<td>CO-CURRICULUM I</td>
</tr>
<tr>
<td></td>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
</tr>
<tr>
<td></td>
<td>BEKE 1123</td>
<td>ELECTRONIC DEVICES</td>
</tr>
<tr>
<td></td>
<td>BEKC 1123</td>
<td>INSTRUMENTATION & MEASUREMENT</td>
</tr>
<tr>
<td></td>
<td>BEKU 1123</td>
<td>ELECTRICAL CIRCUITS I</td>
</tr>
<tr>
<td></td>
<td>BEKU 1121</td>
<td>BASIC ELECTRICAL & ELECTRONICS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LABORATORY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>SEMESTER 2</td>
<td>BLHW 2403</td>
<td>TECHNICAL ENGLISH</td>
</tr>
<tr>
<td></td>
<td>BKKX XXX1</td>
<td>CO-CURRICULUM II</td>
</tr>
<tr>
<td></td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
</tr>
<tr>
<td></td>
<td>BEKU 1243</td>
<td>ELECTRONICS DIGITAL & SYSTEMS</td>
</tr>
<tr>
<td></td>
<td>BEKE 1243</td>
<td>ANALOGUE ELECTRONICS</td>
</tr>
<tr>
<td></td>
<td>BITG 1233</td>
<td>COMPUTER PROGRAMMING</td>
</tr>
<tr>
<td></td>
<td>BEKU 1221</td>
<td>ANALOGUE & DIGITAL ELECTRONICS</td>
</tr>
<tr>
<td></td>
<td>LABORATORY</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>SEMESTER 3</td>
<td>BLHW 3403</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION</td>
</tr>
<tr>
<td></td>
<td>BEKA 2333</td>
<td>DIFFERENTIAL EQUATIONS</td>
</tr>
<tr>
<td></td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
</tr>
<tr>
<td></td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
</tr>
<tr>
<td></td>
<td>BMCG 2343</td>
<td>INTRODUCTION TO MECHANICAL ENGINEERING</td>
</tr>
<tr>
<td></td>
<td>BEKU 2321</td>
<td>ELECTRICAL TECHNOLOGY LABORATORY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>SEMESTER 4</td>
<td>BLHC 3012</td>
<td>TECHNOCRACY COMMUNICATION SKILLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLHC 4012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ORGANIZATION SKILLS</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLHC 4022 NEGOTIATION SKILLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLHC 4032 CREATIVE & CRITICAL THINKING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLHW 1702 TITAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEKA 2453 STATISTICS & NUMERICAL METHODS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEKP 2453 ELECTROMAGNETIC THEORY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEKC 2433 SIGNAL & SYSTEMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEKP 2443 INTRODUCTION TO POWER ENGINEERING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEKU 2431 ELECTRICAL ENGINEERING LABORATORY I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>SHORT</td>
<td>BEKU 2432 ENGINEERING PRACTICE REPORT</td>
<td>P</td>
</tr>
<tr>
<td>SEMESTER I</td>
<td></td>
<td>BEKU 2422 ENGINEERING PRACTICE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>SEMESTER 5</td>
<td>BEKE 3543 POWER ELECTRONICS</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>BEKC 3543 MICROPROCESSOR</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>BEKE 3533 ELECTRICAL MACHINES</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>BEKC 3533 INTRODUCTION TO CONTROL SYSTEMS</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>BEKC 3563 INSTRUMENTATION</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>BEKU 3531 ELECTRICAL ENGINEERING LABORATORY II</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>SEMESTER 6</td>
<td>BEKC 3633 COMMUNICATIONS SYSTEMS</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>BEKC 3643 CONTROL SYSTEMS ENGINEERING</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>BEKE 3653 ELECTRICAL DRIVES & ACTUATOR</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>BEKE 3663 POWER ELECTRONICS SYSTEMS</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>BEKE 3631 POWER ELECTRONICS & DRIVES LABORATORY I</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>BACA 4132 PROJECT MANAGEMENT</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td>SHORT</td>
<td>BEKU 3696 INDUSTRIAL TRAINING</td>
<td>P</td>
</tr>
<tr>
<td>SEMESTER II</td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLHW 2712 ETHNICS RELATIONSHIP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLHW 1722 SCIENCE & TECHNOLOGY PHILOSOPHY OR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLHW 1732 MALAYSIA’S SOSIO-ECONOMY</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>BEKC 4753</td>
<td>PLC & AUTOMATION OR ROBOTICS</td>
</tr>
<tr>
<td></td>
<td>BEKM 4763</td>
<td>POWER SYSTEMS ANALYSIS & HIGH VOLTAGE</td>
</tr>
<tr>
<td></td>
<td>BEKE 4763</td>
<td>MODERN ELECTRICAL DRIVES</td>
</tr>
<tr>
<td></td>
<td>BEKE 4731</td>
<td>ELECTRONICS POWER & DRIVES LABORATORY II</td>
</tr>
<tr>
<td></td>
<td>BEKU 4792</td>
<td>FINAL YEAR PROJECT I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td></td>
<td>BLHC 4042</td>
<td>ENTREPRENEURSHIP & NEW BUSINESS SKILLS</td>
</tr>
<tr>
<td>SEMESTER 8</td>
<td>BEKU 4883</td>
<td>ETIKA KEJURUTERAAN</td>
</tr>
<tr>
<td></td>
<td>BEKU 4894</td>
<td>FINAL YEAR PROJECT II</td>
</tr>
<tr>
<td></td>
<td>BEKE 4883</td>
<td>ELECTRONICS POWER IN INDUSTRY</td>
</tr>
<tr>
<td></td>
<td>BEKP 4863</td>
<td>ELECTRICAL SYSTEM DESIGN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINIMUM TOTAL CREDIT</td>
</tr>
</tbody>
</table>

P = Core Program, K = Core Course, E = Elective, W = Compulsory University
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Subject</th>
<th>Face-to-Face Learning</th>
<th>Self Learning Activities</th>
<th>Formal Assessment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Teacher Centered (TC)</td>
<td>Student Centered (SCL)</td>
<td>PBL / Other SCL Activities</td>
<td>Student Direct Learning / Revision / Exercise</td>
<td>Continuous Learning + Final Examination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKU 1123</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKE 1123</td>
<td>ELECTRONIC DEVICES</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKC 1123</td>
<td>INSTRUMENTATION & MEASUREMENT</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKU 1121</td>
<td>BASIC ELECTRICAL & ELECTRONICS LABORATORY</td>
<td>36</td>
<td>4</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1013</td>
<td>FOUNDATION ENGLISH*</td>
<td>28</td>
<td>28</td>
<td>59</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BLHL 1XXX</td>
<td>THIRD LANGUAGE**</td>
<td>28</td>
<td>48</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM I</td>
<td>28</td>
<td>12</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKE 1233</td>
<td>ANALOG ELECTRONICS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BITG 1233</td>
<td>COMPUTER PROGRAMMING</td>
<td>28</td>
<td>28</td>
<td>59</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKU 1223</td>
<td>DIGITAL ELECTRONIC & SYSTEM</td>
<td>38</td>
<td>12</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKU 1221</td>
<td>ANALOG & DIGITAL ELECTRONICS LABORATORY</td>
<td>36</td>
<td>4</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>BLHW 2403</td>
<td>TECHNICAL ENGLISH*</td>
<td>28</td>
<td>12</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM II</td>
<td>28</td>
<td>12</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>BEKA 2333</td>
<td>DIFERENTIAL EQUATIONS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td>38</td>
<td>12</td>
<td>75</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>BEKM 2343</td>
<td>INTRODUCTION TO MECHANICAL SYSTEM</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Contact Hrs</td>
<td>Practical Hrs</td>
<td>Theory Hrs</td>
<td>Total Hrs</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>BEKU 2321</td>
<td>ELECTRICAL TECHNOLOGY LAB</td>
<td>36</td>
<td>4</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>BLHW 3403</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKA 2453</td>
<td>STATISTICS AND NUMERICAL METHOD</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKP 2453</td>
<td>ELECTROMAGNETIC THEORY</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKC 2433</td>
<td>SIGNAL AND SYSTEMS</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKP 2443</td>
<td>INTRODUCTION TO POWER ENGINEERING</td>
<td>38</td>
<td></td>
<td>12</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>BEKU 2431</td>
<td>ELECTRICAL ENGINEERING LABORATORY 1</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>BLHL XXX2</td>
<td>COMPULSORY ELECTIVE COURSES</td>
<td>28</td>
<td></td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>BLHW 1702</td>
<td>TITAS</td>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Short</td>
<td></td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 2432</td>
<td>ENGINEERING PRACTICE REPORT</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>BEKU 2422</td>
<td>ENGINEERING PRACTICE</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>BEKE 3543</td>
<td>POWER ELECTRONICS</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKC 3543</td>
<td>MICROPROCESSOR</td>
<td>38</td>
<td></td>
<td>12</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>BEKE 3553</td>
<td>ELECTRICAL MACHINE</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKC 3533</td>
<td>INTRODUCTION TO CONTROL SYSTEM</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKC 3563</td>
<td>INSTRUMENTATION</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKC 3531</td>
<td>ELECTRICAL ENGINEERING LABORATORY 2</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Short</td>
<td></td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 3633</td>
<td>COMMUNICATION SYSTEM</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKC 3643</td>
<td>CONTROL SYSTEMS ENGINEERING</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKE 3653</td>
<td>ELECTRICAL DRIVES & ACTUATORS</td>
<td>38</td>
<td></td>
<td>12</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>BEKE 3663</td>
<td>POWER ELECTRONICS SYSTEM</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKC 3631</td>
<td>POWER ELECTRONICS & DRIVES LABORATORY I</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>BLHC 4062</td>
<td>PROJECT MANAGEMENT</td>
<td>28</td>
<td></td>
<td></td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>Short</td>
<td></td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 3696</td>
<td>INDUSTRIAL TRAINING</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>BEKC 4753</td>
<td>PLC & AUTOMATION*</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>BEKLM763</td>
<td>ROBOTICS*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 4792</td>
<td>FINAL YEAR PROJECT I</td>
<td>84</td>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>ECTS</td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKE 4731</td>
<td>POWER ELECTRONICS & DRIVES LABORATORY II</td>
<td>36</td>
<td>4</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKP 4763</td>
<td>HIGH VOLTAGE & POWER SYSTEM ANALYSIS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKE 4763</td>
<td>MODERN ELECTRICAL DRIVES</td>
<td>38</td>
<td>12</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 1722</td>
<td>SCIENCE AND TECHNOLOGY PHILOSOPHY</td>
<td>28</td>
<td>48</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 1732</td>
<td>MALAYSIA’S SOCIO-ECONOMIC DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 2712</td>
<td>ETHNIC RELATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 4984</td>
<td>FINAL YEAR PROJECT II</td>
<td>174</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKE 4883</td>
<td>INDUSTRIAL POWER ELECTRONICS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 4883</td>
<td>ENGINEERING ETHICS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKP 4863</td>
<td>ELECTRICAL SYSTEM DESIGN</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHC 4042</td>
<td>ENTREPRENEURSHIP AND NEW BUSINESS SKILLS</td>
<td>28</td>
<td>48</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINIMUM TOTAL HOURS</td>
<td></td>
<td>1460</td>
<td>96</td>
<td>776</td>
<td>330</td>
<td>2563</td>
</tr>
</tbody>
</table>

* The SLT estimation is to be advised
BACHELOR OF MECHATRONICS ENGINEERING - BEKM
Bachelor of Mechatronics Engineering is a synergistic combination of several engineering disciplines, namely electrical & electronic, mechanical, control, and computer systems design. This program aims to produce graduates who are competent in creating, designing and producing mechatronics products that consist of mechanical and electronic systems which require control of the computer system.

This course would take four (4) years minimum and consist of at least 139 credit hours. The course will emphasize on Mechatronics Engineering with the composition of the credits are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Credit Hours</th>
<th>Peratusan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory University Course</td>
<td>22 - 23</td>
<td>16% - 17%</td>
</tr>
<tr>
<td>Core Programme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering (96)</td>
<td>111</td>
<td>80%</td>
</tr>
<tr>
<td>Programming & Mathematics (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td>6</td>
<td>4%</td>
</tr>
</tbody>
</table>

This course will be conducted with approximately 80% of contact hours that emphasize theory and the remainder 20% meeting hour, involving the practical / laboratory experiments, computer-aided learning, and Problem Based Learning (PBL). It also encourages active and cooperative learning activities other than carrying out assignments, job workshops, industrial training and one final year project based on industrial problem.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>SEMESTER 1</th>
<th>SEMESTER 2</th>
<th>SEMESTER 3</th>
<th>SEMESTER 4</th>
<th>SHORT SEMESTER 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR 1</td>
<td>BEKA 1123</td>
<td>BEKA 1233</td>
<td>BEKA 2333</td>
<td>BEKA 2453</td>
<td>BEKU 2432</td>
</tr>
<tr>
<td></td>
<td>ALGEBRA & CALCULUS</td>
<td>ENGINEERING & MATHEMATICS</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>STATISTICS & NUMERICAL METHODS</td>
<td>ENGINEERING PRACTICE</td>
</tr>
<tr>
<td></td>
<td>BEKI 1123</td>
<td>BEKP 2323</td>
<td>BEKM 2342</td>
<td>BEKC 3533</td>
<td>BEKU 2422</td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL CIRCUIT I</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td>INTRODUCTION TO MECHATRONIC SYSTEMS</td>
<td>INTRODUCTION TO CONTROL SYSTEM</td>
<td>ENGINEERING PRACTICE</td>
</tr>
<tr>
<td></td>
<td>BEKE 1133</td>
<td>BEKU 2333</td>
<td>BEKC 2433</td>
<td>BEKCM 2453</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC DEVICES & SYSTEMS</td>
<td>SIGNAL & SYSTEMS</td>
<td></td>
<td>INSTRUMENTATION SYSTEMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 1123</td>
<td>BMCG 1243</td>
<td>BITG 1233</td>
<td>BEKCM 3543</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STATICS & MECHANICS OF MATERIALS</td>
<td>DIGITAL ELECTRONIC & SYSTEM</td>
<td>COMPUTER PROGRAMMING</td>
<td>MICROPROCESSOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKLM 1121</td>
<td>BEKU 1231</td>
<td>BEKCM 2321</td>
<td>BEKCM 2421</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BASIC ENGINEERING LABORATORY</td>
<td>ELECTRICAL & ELECTRONIC ENGINEERING LABORATORY</td>
<td>MECHANICAL ENGINEERING LABORATORY</td>
<td>CONTROL SYSTEMS LABORATORY</td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>13</td>
<td>16</td>
<td>14</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>ELECTIVE (E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPULSORY UNIVERSITY (W)</td>
<td>BLHW 1013* FOUNDATION ENGLISH</td>
<td>BKKX XXXX CO-CURRICULUM I</td>
<td>BKKX XXXX CO-CURRICULUM II</td>
<td>BLHW 2403 TECHNICAL ENGLISH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR BLHL 1XXX** THIRD LANGUAGE</td>
<td></td>
<td></td>
<td>BKKX XXXX* CO-CU (SU)SIS</td>
<td>BKKX XXXX* CO-CU (SU)SIS</td>
</tr>
<tr>
<td>CREDIT HOUR SEMESTER</td>
<td>2 (3*)</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL CREDIT HOUR SEMESTER</td>
<td>15</td>
<td>17</td>
<td>15</td>
<td>18</td>
<td>4</td>
</tr>
</tbody>
</table>

* THE SUBJECT IS COMPULSORY FOR THE MUET WITH BAND 2 OR BELOW AS (HW)
**THE SUBJECT CAN BE TAKEN IN OTHER SEMESTER IF OFFERED
ONLY 2 CREDIT HOURS WILL BE COUNTED FOR SUKSIS AS CO-CURRICULUM OPTION
<table>
<thead>
<tr>
<th>TYPE</th>
<th>COURSE</th>
<th>SEMESTER 5</th>
<th>SEMESTER 6</th>
<th>SHORT SEMESTER 2</th>
<th>SEMESTER 7</th>
<th>SEMESTER 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE</td>
<td>PROGRAM (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3643</td>
<td>BEKC 3633</td>
<td>BEKU 3696</td>
<td>BEKM 4763</td>
<td>BEKU 4883</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONTROL</td>
<td>COMMUNICATION</td>
<td>INDUSTRIAL</td>
<td>ROBOTICS</td>
<td>ENGINEERING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM ENGINEERING</td>
<td>SYSTEMS</td>
<td>TRAINING</td>
<td>ETHICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 3563</td>
<td>BEK 4753</td>
<td>BEKM 4793</td>
<td>BEKU 4894</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MICROCONTROLLER</td>
<td>PLC &</td>
<td>MECHATRONIC</td>
<td>FINAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TECHNOLOGY</td>
<td>AUTOMATION</td>
<td>SYSTEM DESIGN</td>
<td>YEAR PROJECT II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 3543</td>
<td>BMCG 3643</td>
<td>BEKU 4792</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTROMECHANICAL</td>
<td>HYDRAULIC &</td>
<td>YEAR PROJECT I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEMS</td>
<td>PNEUMATIC SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 3512</td>
<td>BMCG 3653</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGINEERING</td>
<td>THERMODYNAMICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 3522</td>
<td>& HEAT TRANSFER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATERIALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 3531</td>
<td>BEKM 3631</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MECHATRONIC</td>
<td>SYSTEM ENGINEERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SYSTEM ENGINEERING LABORATORY I</td>
<td>LABORATORY II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTIVE (E)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ELECTIVE I (1 of 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BEKU 4883</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ARTIFICIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INTELLIGENCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ELECTIVE II (1 of 3)</td>
<td>BEKU 4873</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MODERN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MANUFACTURING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BEKM 4823</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATA COMMUNICATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>& COMPUTER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NETWORKING</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CREDIT HOUR SEMESTER</th>
<th>14</th>
<th>13</th>
<th>6</th>
<th>9</th>
<th>111</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>COMPULSORY</th>
<th>UNIVERSITY (W)</th>
<th>BKKX XXXX<sup>a</sup></th>
<th>CO-CU (SUKSIS)</th>
<th>BLHW 3403</th>
<th>ENGLISH FOR PROFESSIONAL COMMUNICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BLHW 1722</td>
<td>SCIENCE & TECHNOLOGY PHILOSOPHY OR</td>
<td>BACA 4062</td>
<td>PROJECT MANAGEMENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLHW 1732</td>
<td>MALAYSIA SOSIO ECONOMIC DEVELOPMENT</td>
<td>BLHC XXXX</td>
<td>COMPULSORY ELECTIVE SUBJECT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLHW 1702</td>
<td>TITAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BKKX XXXX<sup>a</sup></td>
<td>CO-CU (SUKSIS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| CREDIT HOUR SEMESTER | 3 | 4 | 4 | 4 | 22 |

<p>| TOTAL CREDIT HOUR SEMESTER | 17 | 17 | 6 | 16 | 14 | 139 |</p>
<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CODE</th>
<th>SUBJECT</th>
<th>CATEGORY</th>
<th>CREDIT</th>
<th>PRE-REQUISITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMESTER 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1013*</td>
<td>FOUNDATION ENGLISH OR THIRD LANGUAGE</td>
<td>W</td>
<td>2(3*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHL 1XXX**</td>
<td>THIRD LANGUAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1123</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 1133</td>
<td>ELECTRONIC DEVICES & SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 1123</td>
<td>STATICS & MECHANICS OF MATERIAL</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 1121</td>
<td>BASIC ENGINEERING LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM I</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>P</td>
<td>3</td>
<td>BEKU 1123</td>
</tr>
<tr>
<td></td>
<td>BEKU 1243</td>
<td>DIGITAL ELECTRONIC & SYSTEM</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 1253</td>
<td>DYNAMICS & MECHANISMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 1231</td>
<td>ELECTRICAL & ELECTRONICS ENGINEERING LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM II</td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 2333</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 2542</td>
<td>INTRODUCTION TO MECHATRONIC SYSTEMS</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 2433</td>
<td>SIGNAL & SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BITG 1233</td>
<td>COMPUTER PROGRAMMING</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 2372</td>
<td>FLUID MECHANICS</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 2321</td>
<td>MECHANICAL ENGINEERING LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 2403</td>
<td>TECHNICAL ENGLISH*</td>
<td>W</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKA 2453</td>
<td>STATISTICS & NUMERICAL METHODS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3533</td>
<td>INTRODUCTION TO CONTROL SYSTEM</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3563</td>
<td>INSTRUMENTATION SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
<td>CATEGORY</td>
<td>CREDIT</td>
<td>PRE-REQUISITE</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---</td>
<td>----------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>BEKC 3543</td>
<td>MICROPROCESSOR</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKE 2422</td>
<td>APPLICATIONS OF ANALOGUE ELECTRONICS</td>
<td>P</td>
<td>2</td>
<td>BEKE 1133</td>
</tr>
<tr>
<td></td>
<td>BEKC 2421</td>
<td>CONTROL SYSTEMS ENGINEERING LABORATORY</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>SHORT</td>
<td>BEKU 2423</td>
<td>ENGINEERING PRACTICE REPORT</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 1</td>
<td>BEKU 2422</td>
<td>ENGINEERING PRACTICE</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 3403</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION*</td>
<td>W</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3643</td>
<td>CONTROL SYSTEM ENGINEERING</td>
<td>P</td>
<td>3</td>
<td>BEKC 3533</td>
</tr>
<tr>
<td></td>
<td>BEKM 3533</td>
<td>MICROCONTROLLER TECHNOLOGY</td>
<td>P</td>
<td>3</td>
<td>BEKC 3543</td>
</tr>
<tr>
<td></td>
<td>BEKM 3543</td>
<td>ELECTROMECHANICAL SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 3512</td>
<td>ENGINEERING GRAPHICS</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 3522</td>
<td>ENGINEERING MATERIALS</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 3531</td>
<td>MECHATRONIC SYSTEM ENGINEERING LABORATORY I</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1722</td>
<td>SCIENCE & TECHNOLOGY PHILOSOPHY</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHW 1732</td>
<td>MALAYSIA SOCIO-ECONOMIC DEVELOPMENT</td>
<td>W</td>
<td>2</td>
<td>MECH 3631</td>
</tr>
<tr>
<td></td>
<td>BLHW 1702</td>
<td>TITAS</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 3633</td>
<td>COMMUNICATION SYSTEMS</td>
<td>P</td>
<td>3</td>
<td>MECH 3631</td>
</tr>
<tr>
<td></td>
<td>BEKC 4753</td>
<td>PLC & AUTOMATION</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 3643</td>
<td>HYDRAULIC & PNEUMATIC SYSTEMS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMCG 3653</td>
<td>THERMODYNAMICS & HEAT TRANSFER</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 3631</td>
<td>MECHATRONIC SYSTEM ENGINEERING LABORATORY II</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SHORT</td>
<td>BEKU 3696</td>
<td>INDUSTRIAL TRAINING</td>
<td>P</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 2</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>SEMESTER</td>
<td>CODE</td>
<td>SUBJECT</td>
<td>CATEGORY</td>
<td>CREDIT</td>
<td>PRE-REQUISITE</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--</td>
<td>----------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>SEMESTER 7</td>
<td></td>
<td>COMPULSORY ELECTIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 3012</td>
<td>TECHNOCRAT COMMUNICATION SKILLS OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 4012</td>
<td>ORGANIZATIONAL COMMUNICATION OR</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 4022</td>
<td>NEGOTIATION SKILLS OR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLHC 4032</td>
<td>CRITICAL CREATIVE THINKING SKILLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BACA 4062</td>
<td>PROJECT MANAGEMENT</td>
<td>W</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 4763</td>
<td>ROBOTICS</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 4793</td>
<td>MECHATRONIC SYSTEM DESIGN</td>
<td>P</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 4792</td>
<td>FINAL YEAR PROJECT I</td>
<td>P</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 4741</td>
<td>MECHATRONIC SYSTEM ENGINEERING LABORATORY III</td>
<td>P</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 4783</td>
<td>MACHINE VISION</td>
<td>E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 4873</td>
<td>ARTIFICIAL INTELLIGENCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SEMESTER 8</td>
<td></td>
<td>ELECTIVE I (CHOOSE ONE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKU 4792</td>
<td>MECHATRONIC SYSTEM ENGINEERING LABORATORY III</td>
<td>P</td>
<td>4</td>
<td>BEKU 4792</td>
</tr>
<tr>
<td></td>
<td>BEKC 4783</td>
<td>DIGITAL CONTROL SYSTEMS</td>
<td>E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKC 4883</td>
<td>MODERN MANUFACTURING SYSTEMS</td>
<td>E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BEKM 4823</td>
<td>DATA COMMUNICATIONS & COMPUTER NETWORKING</td>
<td>E</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINIMUM TOTAL CREDIT</td>
<td></td>
<td>139</td>
<td></td>
</tr>
</tbody>
</table>

P = Core Program, E = Elective, W = Compulsory University
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Subject</th>
<th>Face-to-Face Learning</th>
<th>Self Learning Activities</th>
<th>Formal Assessment</th>
<th>Continuous Learning + Final Examination</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Teacher Centered (TC)</td>
<td>Student Centered Learning (SCL)</td>
<td>PBL / Other SCL Activities</td>
<td>Student Direct Learning / Revision / Exercise</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BEKA 1123</td>
<td>ALGEBRA & CALCULUS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>BEKU 1123</td>
<td>ELECTRICAL CIRCUIT I</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>BEKE 1133</td>
<td>ELECTRONIC DEVICES & SYSTEM</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>BMCG 1123</td>
<td>STATIC & MECHANIC OF MATERIAL</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>BEKM1121</td>
<td>BASIC ENGINEERING LABORATORY</td>
<td>36</td>
<td></td>
<td>4</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>1</td>
<td>BLHW 1013</td>
<td>FOUNDATION ENGLISH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BLHL 1XXX</td>
<td>THIRD LANGUAGE**</td>
<td>28</td>
<td></td>
<td>48</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>BEKA 1233</td>
<td>ENGINEERING MATHEMATICS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>BEKP 2323</td>
<td>ELECTRICAL TECHNOLOGY</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>BEKU 2333</td>
<td>ELECTRICAL CIRCUIT II</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>BEKU 1223</td>
<td>DIGITAL ELECTRONIC & SYSTEM</td>
<td>38</td>
<td>12</td>
<td>75</td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>2</td>
<td>BMCG 1253</td>
<td>DYNAMIC & MECHANISM</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>BEKU 1221</td>
<td>ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY</td>
<td>36</td>
<td>4</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BKXX XXXX</td>
<td>CO-CURRICULUM I</td>
<td>28</td>
<td></td>
<td>12</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>BEKA 2333</td>
<td>DIFFERENTIAL EQUATIONS</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>3</td>
<td>BEKM 2342</td>
<td>INTRODUCTION TO MECHATRONIC SYSTEM</td>
<td>28</td>
<td>4</td>
<td>54</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>BEKC 2433</td>
<td>SIGNAL AND SYSTEM</td>
<td>42</td>
<td>4</td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>CredITS</td>
<td>Lect.</td>
<td>Pract.</td>
<td>Theory</td>
<td>Exam</td>
<td>Total</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>BITG 1233</td>
<td>COMPUTER PROGRAMMING</td>
<td>28</td>
<td>28</td>
<td></td>
<td>59</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BMCG 2372</td>
<td>FLUID MECHANICS</td>
<td>28</td>
<td>4</td>
<td></td>
<td>54</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>BEKM 2321</td>
<td>MECHANICAL ENGINEERING LABORATORY</td>
<td></td>
<td>36</td>
<td></td>
<td>4</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>BKKX XXXX</td>
<td>CO-CURRICULUM II</td>
<td>28</td>
<td>12</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKA 2453</td>
<td>STATISTICS AND NUMERICAL METHOD</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BEKC 3533</td>
<td>INTRODUCTION TO CONTROL SYSTEM</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BEKM 2463</td>
<td>INTRUMENTATION SYSTEM</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BEKC 3543</td>
<td>MICROPROCESSOR</td>
<td>38</td>
<td>12</td>
<td></td>
<td>75</td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>BEKE 2422</td>
<td>APPLICATIONS OF ANALOGUE ELECTRONICS</td>
<td>28</td>
<td>4</td>
<td></td>
<td>54</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>BEKC 2421</td>
<td>CONTROL SYSTEM ENGINEERING LABORATORY</td>
<td></td>
<td>36</td>
<td></td>
<td>4</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>BLHW 2403</td>
<td>TECHNICAL ENGLISH*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 2432</td>
<td>ENGINEERING PRACTICE REPORT</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 2422</td>
<td>ENGINEERING PRACTICE</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKC 3643</td>
<td>CONTROL SYSTEM ENGINEERING</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BEKM 3533</td>
<td>MICROCONTROLLER TECHNOLOGY</td>
<td>38</td>
<td>12</td>
<td></td>
<td>75</td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>BEKM 3543</td>
<td>ELECTRO-MECHANICAL SYSTEM</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BMCG 3512</td>
<td>ENGINEERING GRAPHICS</td>
<td>28</td>
<td>4</td>
<td></td>
<td>48</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>BMCG 3522</td>
<td>ENGINEERING MATERIALS</td>
<td>28</td>
<td>4</td>
<td></td>
<td>48</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>BEKM 3531</td>
<td>MECHATRONIC SYSTEM ENGINEERING LABORATORY I</td>
<td>36</td>
<td>4</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 3403</td>
<td>ENGLISH FOR PROFESSIONAL COMMUNICATION*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKC 3633</td>
<td>COMMUNICATION SYSTEM</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BEKC 4753</td>
<td>PLC & AUTOMATION</td>
<td>38</td>
<td>12</td>
<td></td>
<td>75</td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>BMCG 3643</td>
<td>HYDRAULIC AND PNEUMATIC SYSTEM</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BMCG 3653</td>
<td>THERMODYNAMICS AND HEAT TRANSFER</td>
<td>42</td>
<td>4</td>
<td></td>
<td>69</td>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>BEKM 3631</td>
<td>MECHATRONIC SYSTEM ENGINEERING LABORATORY II</td>
<td>36</td>
<td>4</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 1722</td>
<td>SCIENCE AND TECHNOLOGY PHILOSOPHY</td>
<td>28</td>
<td>48</td>
<td>48</td>
<td>4</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Hours</td>
<td>ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------</td>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 1732</td>
<td>MALAYSIA'S SOCIO-ECONOMIC DEVELOPMENT</td>
<td>28</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 1702</td>
<td>TITAS</td>
<td>48</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 3996</td>
<td>INDUSTRIAL TRAINING</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKM 4783</td>
<td>MACHINE VISION (ELECTIVE I)</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKC 4883</td>
<td>ARTIFICIAL INTELLIGENCE (ELECTIVE I)</td>
<td>79</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKM 4763</td>
<td>ROBOTICS</td>
<td>69</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 4732</td>
<td>FINAL YEAR PROJECT I</td>
<td>84</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKM 4773</td>
<td>MECHATRONIC SYSTEM DESIGN</td>
<td>38</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKM 4741</td>
<td>MECHATRONIC SYSTEM ENGINEERING LABORATORY III</td>
<td>36</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACA 4062</td>
<td>PROJECT MANAGEMENT</td>
<td>28</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHC XXXX</td>
<td>COMPULSORY ELECTIVE COURSES</td>
<td>28</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 4834</td>
<td>FINAL YEAR PROJECT II</td>
<td>174</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKU 4883</td>
<td>ENGINEERING ETHICS</td>
<td>69</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKC 4783</td>
<td>DIGITAL CONTROL SYSTEM (ELECTIVE II)</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEKC 4873</td>
<td>MODERN MANUFACTURING SYSTEMS (ELECTIVE II)</td>
<td>69</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENG 4823</td>
<td>DATA COMMUNICATION & COMPUTER NETWORK (ELECTIVE II)</td>
<td>42</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACA 4042</td>
<td>ENTREPRENEURSHIP AND NEW BUSINESS SKILLS</td>
<td>28</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLHW 2712</td>
<td>ETHNIC RELATIONS</td>
<td>28</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL HOURS</td>
<td></td>
<td>1478</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The SLT estimation is to be advised
MATHEMATICS SUBJECT

BEKA 1123

ALGEBRA & CALCULUS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Use the properties, determinant and inverse of matrix to solve systems of linear equations.
2. Apply the properties of trigonometry function to solve trigonometry problem.
3. Apply the properties and the operations of complex numbers.
4. Solve derivatives of algebraic, logarithmic, trigonometric and exponential functions.
5. Solve integrals of algebraic, logarithmic, trigonometric and exponential functions.

Synopsis
This course will discuss mainly about the functions and graphs, trigonometry, matrices, complex numbers and techniques of integration and differentiation.

References
1. Algebra & Calculus Module, UTeM 2011
3. Tay Choo Chuan et. al, Introduction to Linear Algebra, Penerbit UTeM, 2010

BEKA 1233

ENGINEERING MATHEMATICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify the multivariable functions together with its domain and range.
2. Solve double and triple integrals of functions using various techniques.
3. Apply the techniques of integration to calculate the properties of solid such as volume, mass and moment of inertia.
4. Define the properties of vector and curve space.

Synopsis
This subject consists of three chapters: Functions of Several Variables, Multiple Integrals and Vector-valued Functions. The syllabus is developed by introducing the concepts of the functions with severable variables, double and triple integrations and also vector-valued function, followed by learning various techniques in solving the problems and its application in physical and engineering fields.

References
2. Maurice D. Weir, Joel Hass, George B. Thomas, Thomas' calculus, Addison-Wesley, 2010

BEKA 2333

DIFFERENTIAL EQUATIONS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Solve second order linear differential equations with constant coefficients by using method of undetermined Coefficient and method of Variation of Parameters.
2. Solve linear differential equations with constant coefficients by the Laplace Transform method.
3. Construct the Fourier series of given function.
4. Solve partial differential equations using the separation of variable method.
5. Produce coherent mathematical and scientific arguments needed in solving differential equations and related application problems in science and engineering.

Synopsis
This subject consists of 5 chapters: Introduction of ordinary and partial differential equations, second order linear differential equation with constant coefficients, Laplace Transform, Fourier Series and Partial Differential Equations. The syllabuses are developed based on these three different stages which is exposing the learner’s on the fundamental concept of differential equation, various techniques to solve different type of differential equation and lastly, apply the various solving techniques to the learner’s engineering problem.

References
1. Module 2 Differential Equations, UTeM 2010
2. Dennis G. Zill, Michael R. Cullen, Differential equations with boundary-value problems, Cengage, 2009

BEKA 2453
STATISTICS & NUMERICAL METHODS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Construct probability models for a range of random phenomena, both discrete and continuous.
2. Analyze and interpret data by using statistical modeling technique to produce statistical information.
3. Apply the concept of hypothesis testing to solve engineering problems.
4. Apply numerical techniques to solve differentiation and integration.

Synopsis

References
BEKP SUBJECTS
BEKP 2323
ELECTRICAL TECHNOLOGY

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe the principle of ac voltage and current generation, RMS and Average values for single and three phases system.
2. Explain and analyze the phasor representation for sinusoidal quantity for ac circuits in single and three phases system.
3. Demonstrate leading, lagging and unity power-factor concepts through the resistive, inductive and capacitive elements.
4. Utilize power-triangle concept in power measurement for balanced and unbalanced load in three phase power system.
5. Apply the basic magnetic circuit properties in determining the parameters and performance of single-phase transformer.

Synopsis
This subject introduces students to topics such as alternating current circuit analysis, phasor representation, RMS value, average power, reactive power, active power, apparent power, power factor and power factor correction. Magnetic circuit, construction and operation of transformer, generation of three phase voltage, balanced and unbalanced three phase load and also voltage, current, power and power factor calculation.

References

BEKP 2443
INTRODUCTION TO POWER ENGINEERING

Learning Outcomes
Upon completion of this subject, students should be able to:
1. Understand and apply the basic mathematical models of electric power system.
2. Understand the modelling (static parameters) principles of power system equipments such as transformer, generator and transmission line.
3. Utilize per-unit quantities and power system model in calculating power system static/steady state parameters & modelling such as voltage, current and power.
4. understand the components and basic principle of system protection.
5. Ability to exhibit elements of soft skills such as communication skills, critical thinking and problem solving skills and spirit of teamwork.

Synopsis
This subject introduces the overall components of power system to the students. the power system components such as generator, transformer and transmission line will be modeled for analytical purposes. Other topics include in this subject are per unit quantities, transmission line parameters & models, and introduction to system protection. This subject will also include Problem Based Learning (PBL) as part of teaching approach for a certain topics.

References

BEKP 2453
ELECTROMAGNETIC THEORY

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Apply vector analysis in order to solve problems regarding electromagnetic phenomena.
2. Explain the principle of electrostatics and calculate basic & intermediate electrostatic problems.
3. Explain the principle of magnetostatics and calculate basic & intermediate magnetostatic problems.
4. Identify and utilize the Maxwell’s equation in static and dynamic electromagnetic fields.
5. Analyze the electromagnetic application in plane-wave propagation.

Synopsis
This subject begins by teaching about vector calculus, an essential mathematical tool for gaining a quantitative understanding of the electromagnetic phenomena. It is then followed by the study of electrostatic fields; covering Coulomb’s Law, Gauss’s Law, conductors, dielectrics, and electric boundary conditions. Next, magnetostatic fields are covered; its sub-topic include Biot-Savart’s Law, Ampere’s Law, magnetic forces and torque, and magnetic boundary conditions. After that, the subject will examine the situations in which electric and magnetic fields are dynamic (i.e. varies with time) using Maxwell’s equations. Finally, the applications of electromagnetic theory in wave propagation, and transmission lines are studied.

References

BEKP 3631
INDUSTRIAL POWER ENGINEERING LABORATORY I

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Students are able to model a power system network in ERACS software and analyze load flow and transient stability.
2. Students are able to model a power system network in MATHLAB software and analyze symmetrical and unsymmetrical fault current and voltage.
3. Students are able to model a simple power system and analyze power flow using CAPE software.
4. Distinguish direct and indirect control of single acting cylinder
5. Investigate the transient and steady state performance of the motor speed control system under PID control appropriately.
6. Exhibit soft skills through teamwork, critical thinking and problem solving appropriately.

Synopsis
This subject will discuss about three important parts in industrial power engineering which is electrical drives, power system analysis and control system engineering. It will introduce the analysis, application, drives and actuator’s size which currently used extensively. Explore practically the electric machine drives such as electro-mechanical energy. Then, students will investigate the power networks by using power system analysis software. This activity will deals with symmetrical and asymmetrical fault analysis, basic protection requirement and also transient stability analysis. In control system, students will be trained to investigate the transient and steady state performance of the motor speed control system under PID control appropriately.

References
BEKP 3673
POWER SYSTEM ANALYSIS

Learning Outcomes
Upon completion of this subject, the student should be able to:

1. Use the per-unit system in order to generate impedance and reactance diagram from one-line diagram.
2. Use Newton-Raphson method for power flow analysis.
3. Able to use synchronous machines transient models to analyse a fault.
4. Apply the concept of thevenin impedance and bus impedance matrix to analyse balanced fault in power system.
5. Apply the concept of symmetrical components to analyse unbalanced faults/loads in power systems.

Synopsis
This course is a continuation from the course Power Engineering Fundamentals (BEKP 2443). The power system analysis covers transient/dynamic nature of power systems such as fault analysis, load flow and stability analysis. Fundamental theories and mathematical equations on transient phenomena of synchronous machines are discussed. This leads to the analysis of balanced and unbalanced faults in power systems. Solutions for unbalanced faults are approached using fundamental os symmetrical components. The course also covers the fundamental concept of the behaviour of synchronous machines after a disturbances, i.e, steady-state and transient stability.

References

BEKP 4731
INDUSTRIAL POWER ENGINEERING LABORATORY II

Learning Outcomes
Upon completion of this subject, the student should be able to:

1. Operate the generation equipment of gen-set systematically.
2. Apply the transmission line system using transmission modeling technique accurately.
3. Carry out power factor correction by using capacitor bank for energy auditing and efficiency of electrical distribution system effectively.
4. Expose to power system (distribution)

Synopsis
This subject intended to give the students knowledge in industrial power, which is power generation, transmission, distribution and energy efficiency. It will focus on the types of power generation and correlation of generators and interconnections. Student also will discover the way to apply the ABCD modeling technique to the transmission line system. In addition, in scope of energy efficiency, student will investigate on the subject of the power quality, harmonics and energy audit and introduction to solar system. Student will organize a visit to distribution field which related to power distribution.

References
BEKP 4743
POWER SYSTEM ANALYSIS & HIGH VOLTAGE

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Perform load flow analysis using Newton Raphson method and show the power flow direction on the single line diagram.
2. Calculate fault current and fault level of power system using symmetrical components for unbalance system.
3. Explain the methods to generate and measure HVAC, HVDC and impulse voltage.
4. Identify breakdown criteria for insulation properties.
5. Distinguish between different types of high voltage testing technique.
6. Exhibit soft skills such as communication skills, critical thinking and problem solving skills and spirit of teamwork.

Synopsis
This subject is classified into two parts. The first part is power system analysis. This part deals with nodal equations of power system networks and formation of bus admittance and impedance matrixes. Application of bus admittance and impedance matrixes in power system analysis such as asymmetrical fault studies, load flow and power control and transient stability are concerned. The second part is high voltage technology. This part focuses on generation of HVAC, HVDC and impulse voltage; measurement of high voltage and breakdown in gases, solid dielectrics and liquid. The students are also exposed to diagnostic testing of insulation.

References

BEKP 4753
POWER GENERATION & TRANSMISSION

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Define the types and sources of generation systems and compare among the generation sources.
2. Describe and analyze the load and frequency control along with voltage and reactive power control.
3. Conduct practical competence for the generation operation systems as well as for the of high voltage transmission line design.
4. Apply ABCD transmission modeling technique to the transmission line system.
5. Apply and solve the power plant economics and costing problems related to the real generation systems.

Synopsis
This subject is intended to give the students deep knowledge about generation and power transmission. It focuses on the generation system types and types of sources of generation systems, parallel operation of generators and interconnections, power plants economics and generation cost analysis. The load and frequency control along with voltage and reactive power control in power transmission systems as well as ABCD transmission modelling technique are also covered.

References
BEKP 4763
ENERGY EFFICIENCY

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain the electrical tariff structure and calculate the cost rate charged to residential, commercial and industrial consumers.
2. Determine the economic management system for electrical energy.
3. Resolve the quality improvement in power system.
4. Explain the importance of renewable energy and able to determine the size of Photovoltaic System.
5. Perform energy auditing on electrical distribution system.

Synopsis
This subject is an introductory course to energy efficiency in electrical distribution system. Material encountered in the subject includes: Tariff structure and cost rate charged to residential, commercial and industrial consumers, Economic Management System for Electrical Energy, Power Quality and Harmonics, Renewable Energy and Energy Audit. The course uses examples from current research and development.

References

BEKP 4783
DISTRIBUTION SYSTEM DESIGN

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify the standard and regulation related to electrical installation.
2. Differentiate the characteristic, specification of circuit breakers and cables.
3. Determine the method of earthing system and earthing arrangement.
4. Use standard design procedures to design of low voltage system.
5. Perform testing and troubleshooting on low voltage installation.

Synopsis
This subject presents the principles and design of electrical distribution system. There are various issues of distribution system that are covered; including regulations and standards related to electrical installation. Characteristics, specifications for circuit breakers, cable size selection, and method of earthing and earthing arrangement are described in detail. The students are also exposed to the use of standard design procedures and the type of testing and troubleshooting required for low voltage systems.

References

BEKP 4873
POWER SYSTEM PROTECTION

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Apply the basic principles of power system protection.
2. Utilize power system components through technical and economic justification.
3. Evaluate and design coordination for IDMT, Distance and Differential Protection Relay.
4. Evaluate and carry out protection coordination on the electrical equipment based on the appropriate protection schemes.

Synopsis
This subject introduces the power system protection and devices, protection method and safety in power system analysis. Enhancement to various type of protection scheme and device such as protection relay, CTs, VTs,
short circuit current management, overcurrent protection, relay coordination, unit protection, transformer protection, busbar protection, motor protection, generator protection, control circuit and testing, operation and maintenance.

References

BEKP 4863
ELECTRICAL SYSTEM DESIGN

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify the standard and regulation related to electrical installation.
2. Differentiate the characteristic, specification of circuit breakers and cables.
3. Determine the method of earthing system and earthing arrangement.
4. Use standard design procedures to design of low voltage system.
5. Perform testing and troubleshooting on low voltage installation.

Synopsis
This subject presents the principles and design of electrical distribution system. There are various issues of distribution system that are covered; including regulations and standards related to electrical installation. Characteristics, specifications for circuit breakers, cable size selection, and method of earthing and earthing arrangement are described in detail. The students are also exposed to the use of standard design procedures and the type of testing and troubleshooting required for low voltage systems. This subject also covers the air conditioner, lighting and common electrical equipments design requirements.

References

BEKP 4883
HIGH VOLTAGE ENGINEERING

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Define and describe the phenomena of high voltage stress on the insulation of power systems.
2. Identify conduction and breakdown criteria for insulation properties: Gas, solid and liquids.
3. Explain the methods to generate and measure HVAC, HVDC and impulse voltage.
4. Distinguish between different types of high voltage diagnostics and testing technique.
5. Explain lightning phenomena and their protection.

Synopsis
This subject is intended to give the students deep knowledge about high voltage engineering. It focuses on the phenomena of high voltage surges and insulation coordination for power systems, characteristics of conduction and breakdown of gas, liquid and solid dielectrics. Generation of high voltages, their measurement and testing technique for high voltage components. In this subject, the student are also exposed to lightning phenomena and their protection.

References
BEKC SUBJECTS
BEKC 1123
INSTRUMENTATION & MEASUREMENT

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Define various terms and standards in measurement.
2. Explain the principle of DC/AC ammeter and voltmeter.
3. Calculate the waveforms of electrical signals displayed by oscilloscope.
4. Apply the bridge techniques to measure resistance, inductance and capacitance.
5. Evaluate sensors for field measurement and applications.

Synopsis
This subject discusses about units and dimensions, standards, errors and calibration in measurement. It covers most of the measurement devices such as galvanometers, ammeters, voltmeters, wattmeter, oscilloscope and other sensing and measuring devices such as sensors for movement, position, force, pressure, temperature flow and etc. This subject also introduces to instrumentation elements.

References

BEKC 2433
SIGNAL & SYSTEMS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Differentiate the classification of basic continuous-time and discrete-time signals & systems.
2. Describe and analyze linear time-invariant (LTI) systems in time-domain by examine their inputs and outputs.
3. Describe and analyze linear time-invariant (LTI) systems in time-domain by examine their inputs and outputs.
4. Compute and determine a system output in either time / frequency given the system input and description of the system using Laplace-Transform and / or Z-Transform, as appropriate.

Synopsis
This course will discuss about the introduction to signals and systems; classification of signals and systems; linear time invariant systems and convolution; Fourier analysis for continuous time and discrete time signals; Fourier series and Fourier transform; Laplace-Transform and Z-transforms.

References

BEKC 3533
INTRODUCTION TO CONTROL SYSTEMS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe the basic features and configuration of control systems.
2. Apply appropriate techniques to perform block diagram reduction of multiple subsystems in order to obtain its transfer function.
3. Derive the mathematical model for electrical, mechanical and electromechanical linear time invariant systems in frequency domain and time domain.
4. Analyze the transient and steady state performance for first and second order systems.
5. Define and sketch root locus of a system.
6. Draw the asymptotic approximation bode plots for first order and second order form.
Synopsis
This subject will discuss about the concepts in control system; open and closed loop system; transfer function; block diagram reduction and signal flow graphs; modeling for electrical system, mechanical system and electromechanical system; transient and steady-state performance for first, second and high order systems; Routh Hurwitz criteria for stability; steady-state error analysis; Root Locus and Bode plot.

References
4. Bishop, Dorf, Modern Control Systems, 10th Edition,
5.
6.
7.
8.

BEKC 3543
MICROPROCESSOR

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe the architecture and organization of a microprocessor.
2. Write and debug programs using assembly language for microprocessor applications.
3. Design microprocessor system with memory and peripheral device interfaces.
4. Use interrupts and describes its operational requirements in microprocessor system.
5. Demonstrate the practical competence using MC68000 microprocessor for software and hardware development.

Synopsis
This course is about hardware and microprocessor handling, type of microprocessor systems, system handler including interrupt and timing diagrams. The course covers the concept of MC68000 microprocessor software architecture, programming, assembly language and basic instruction, data transferring instruction, program control and subroutine, arithmetic and logic operations. It touches most on programming techniques, designing a microcomputer system, interfaces with memory and input/output devices.

References

BEKC 3563
INSTRUMENTATION

Learning Outcomes
Upon completion of this subject, students should be able to:
1. Explain the principles and elements of data acquisition system
2. Apply the right sensors/transducers for data acquisition system
3. Design signal conditioning circuit for data acquisition system
4. Evaluate the A/D and D/A techniques, interfaces standards and types of data presentation
5. Exhibit communication and critical thinking skills on specialized, reliability and economics topics in instrumentation

Synopsis
This subject emphasize on instrumentation elements for complete data acquisition system such as sensors & transducers, signal conditioning & processing, A/D and D/A conversion, interfacing standards and data presentation. This subject also touches on some specialized instrumentation, reliability & economics in instrumentation
and also introduces instrumentation for industrial and process control application.

References

BEKC 3643
CONTROL SYSTEMS ENGINEERING

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe the design procedure for a controller
3. Analyze closed-loop frequency response of unity feedback system
5. Design a state feedback controller using pole placement to meet transient response specifications.
6. Design an observer for a system.

Synopsis
This subject will discuss about the compensator design in control systems engineering; active compensator PI, PD and PID using root locus technique; passive compensator Lag, Lead and Lag-Lead using root locus and frequency response technique; closed loop frequency response of unity feedback system; state feedback design using Pole placement technique as well as integral control and observer design.

References

BEKC 3633
COMMUNICATION SYSTEMS

Learning Outcomes
Upon completing this course, the student should be able to:
1. Explain the basic principles and components of telecommunication systems.
2. Analyze the AM & SSB modulation / demodulation techniques that are typically used in telecommunication systems.
3. Analyze the FM modulation / demodulation techniques that are typically used in telecommunication systems.
4. Classify the digital communication systems, in term of its transmission and modulation / demodulation
5. Identify the typical data communication and network for communication systems.
6. Familiarize the various types and characteristics of transmission lines used as the transmission media.

Synopsis

References

BEKC 4753

PLC& AUTOMATION

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain the PLC system operation principle.
2. Explain the principles of robotics and automation system in modern manufacturing.
3. Demonstrate PLC programming based on IEC standard and industrial application.
4. Construct an automated system based on industrial application.
5. Design a complete PLC based automation system.

Synopsis
This subject will expose students with knowledges and skills of PLC including its definition, main hard components, PLC programming languages, interfacing PLC with computers, integrates PLC hardware and software to design an automation system, introduction to robotics & automation system in manufacturing process, computer-integrated manufacturing (CIM) and automation work cell.

References

BEKC 4763

INDUSTRIAL CONTROL & INSTRUMENTATION

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain the process variables in the process control industries.
2. Distinguish the process variables, elements and instruments for pressure, temperature, level, flow and analytical process.
3. Apply an automation technologies for process control such as SCADA and DCS.
4. Analyze the control loops characteristics in the process control industries.
5. Design an appropriate controllers for process control industries.
6. Identify, analyze, and solve critically the technical problems.

Synopsis
This subject will cover topic on introduction to industrial process control including basic terms and diagrams. It’s also emphasized on process variables, elements, and instruments for temperature, level and flow of process control. The right controllers for process control are discussed and control loops in process control are analyzed. Applications of automation technologies such as SCADA and DCS for process control are also explained.

References

BEKC 4783

DIGITAL CONTROL SYSTEMS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe and differentiate between continuous and digital control system through sampling process and signal conversion.
2. Perform system analysis in z-domain based on pole and zero location, root locus and stability criteria of linear-time invariant systems.
3. Analyze digital systems performance based on transfer function.
4. Design and develop cascaded digital controllers using PID, lead and lag compensators.
5. Perform analysis on digital control systems using state variables.
6. Design digital control system using state variable technique.

Synopsis
This course deals with sampling process, quantization and Z transform. Modeling and analysis of ADC, DAC, ZOH devices. Analysis of linear time-invariant (LTI) systems in z-domain include system stability, pole and zero locations, root locus, convolution. System modeling using transfer function and closed loop block diagram in z-domain. Design of discrete/digital controllers (PID, Lead and Lag) for second order closed loop systems. Introduction to discrete system state variables. Design of discrete controller using state variable technique. System analysis and design using simulation software MATLAB/SIMULINK

References

BEKC 4873
ARTIFICIAL INTELLIGENCE

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain the essential concepts, principals and theories relating to Artificial Intelligence (AI) in general, and for fuzzy logic and neural networks in particular.
2. Construct and practise basic fuzzy logic and/or neural network systems according to the engineering problem.
3. Demonstrate through simulations of fuzzy logic and/or neural network related systems using Simulink/MATLAB or other specified tools.
4. Analyze the performance of fuzzy logic and/or neural network systems according to the given problem.

Synopsis
Introduction of intelligent systems using Artificial Intelligent system such as fuzzy logic, neural network and expert system. Focus on popular techniques of AI i.e artificial
neural networks, fuzzy logic and genetic algorithms. Development of algorithms, which have capabilities such as learning, reasoning, etc. Problem solving through expert engines and database for expert performances. Automation of data acquisition from human experience and explanation of problem solving behaviour. A series of simulations of fuzzy logic and neural network algorithms using SIMULINK/MATLAB or other software packages.

References
2. Kenji Sugawara; Artificial Intelligence; Morikita; 1997.
5. George F. Luger; Artificial Intelligence, Structures and Strategies for Complex Problem Solving; 5th Edition; Addison Wesley; 2005.

BEKC 3631
CONTROL ENGINEERING, AUTOMATION & INSTRUMENTATION LABORATORY I

Synopsis
This laboratory introduces to the students analysis, simulation, applications in communication systems and control, instrument & automation system engineering. This lab will cover the following topics:
1. closed loop system analysis
2. designed controllers for the purpose of improving the original system
3. consisting of relay, contacts, switchgears, timers, sensors, special AC/DC motors, step motors and pneumatic & electro-pneumatic applications
4. design basic principles for telecommunications system

References
BEKE SUBJECTS
BEKE 1123
ELECTRONICS DEVICES

Learning Outcomes
Upon completion of this subject, the student should be able to:

1. Explain the concept of semiconductor devices such as Diode, BJT, JFET MOSFET and Op Amp.
2. Describe the operation of Diode, BJT, JFET, MOSFET and Op Amp circuit.
4. Utilize simulation tools to analyze the semiconductor device circuit

Synopsis
Semiconductor devices and pn junction like conductive characteristics, semiconductor carrier, p type, n type and pn junction biasing. Semiconductor diode characteristics, pn junction, Schottky diode, Photodiode, operation of bipolar junction transistor (BJT); common base, common collector and common emitter configurations. Transistor JFET and MOSFET characteristics and biasing. Oeprational amplifier; comparator, inverting, noninverting, summing, differential and integral. Simulation modelling of the diode, BJT, JFET using PSPICE.

References

BEKE 1243
ANALOGUE ELECTRONICS

Learning Outcomes
Upon completion of this subject, the student should be able to:

1. Understand the basic concept of semiconductor devices and PN junction biasing.
2. Analyze the operation and diode characteristics of diode, BJT, FET, MOSFET and operational amplifiers.
3. Conduct experiments and analyze data for diode, BJT, FET, MOSFET and operational amplifiers.
4. Run simulation softwares to examine the functionality of semiconductor devices.

Synopsis
Semiconductor materials and pn junctions such as flow characteristics, semiconductor carrier, p-type and n-type and biasing of pn junction. Diode semiconductor characteristics, electrical features at diode pn junction, attributes of bipolar junction transistors (BJT) and biasing characteristics. model is simulated using PSPICE.

References
signal amplifier, power amplifiers (class A & class AB), oscillator, active filters, and voltage regulators (shunt and series)

References

BEKE 2422
APPLICATION OF ANALOGUE ELECTRONICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain the concept of small signal amplifiers for BJT configuration, active filters, voltage regulator and power amplifier.
2. Analyze and apply the operation and characteristics of BJT, active filters, power amplifier and power supply.

Synopsis
Introduction to the basic principles of analog electronics, emphasis on the concept of amplification. This subject covers the concept of amplifiers, BJT as an amplifying device, small signal amplifiers, power amplifiers (class A and AB), active filters and voltage regulators (parallel and series).

References

BEKE 3543
POWER ELECTRONICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Discuss the characteristic of semiconductor switches such as thyristors, bipolar devices, MOSFETs, IGBTs and choose the appropriate devices for an application.
2. Explain the operation of rectifier, non-isolated DC-DC converter and inverter, including the topology exist in each circuit.
3. Design and analyze the characteristics and performance of rectifier, isolated DC-DC converter and inverter.
4. Use simulation software such as PSpice, PSim, Matlab Simulink to analyze rectifier non-isolated DC-DC converter and inverter circuit.
5. Discuss the safety and protection issues of power switch for implementation in power electronics circuit.

Synopsis
This course is an introduction to power electronics circuit and system. It covers the basic principles of semiconductor devices, switching process and implementation of semiconductor devices as switches in power electronics circuit. Furthermore, it covers design and analysis of various power electronics converter such as uncontrolled and controlled rectifier, non isolated DC to DC converter; buck, boost, buck-boost and Cuk and also square wave and PWM single phase inverter.

References
BEKE 3533
ELECTRICAL MACHINES

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Understand basic type of electrical machines, physical construction and equivalent electrical circuit diagrams.
2. Identify the difference of physical construction and working principles between DC machines and AC machines; synchronous machines and asynchronous machines.
3. Know basic drive methods for DC and AC machines.
4. Run some specific tests for electrical and mechanical parameters determination.
5. Investigate the performance of electric machines.

Synopsis
Introduction to DC and AC type of electrical machines which cover physical construction and equivalent electrical circuit diagrams. The machine performances like torque, speed and efficiency are investigated. The starting and control techniques are also investigated for a better machine selection of appropriate application.

References

BEKE 3631
POWER ELECTRONICS ENGINEERING & DRIVES LABORATORY

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Demonstrate the operation of the three phase three pulse rectifier and inverter circuit correctly
2. Observe, analyze and write the experimental result in technical report related to controller design, power electronics system & actuator and drive correctly
3. Demonstrate the application of switches, relay, indicators, sensors, timer and electro pneumatic systems
4. Determine the characteristics of PID controller for motor speed and position in terms of percentage overshoot, peak time, settling time and rise time accurately
5. Exhibit soft skills such as communication skills, critical thinking, problem solving and teamwork

Synopsis
Students will be exposed to the experiments include observing the performance of three phase three pulse rectifier and inverter circuit, as well as the operating of switches, relay, indicators, sensors, timer and electro pneumatic systems and PID controller.

References
BEKE 3643
ELECTRICAL DRIVES & ACTUATORS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify power electronics conversion in DC drive
2. Model & design a DC drive system
3. Explain the principles of induction motor drive
4. Design the scalar control of induction motor drive
5. Explain the use of electrical and mechanical actuator in motor drive system.

Synopsis
This subject will introduce to the electrical, mechanical, pneumatic and hydraulic electrical actuator and drive system. This subject will discuss on the definition, symbols, system, circuits, operation and components of the pneumatic, hydraulic and mechanical actuator system. Another part of this subject will cover on the electrical drive for DC and AC motor. It focuses on the fundamentals of the electrical drive, including element, block diagram, feedback, load characteristics and motor sizing. In addition, special discussion on the four quadrant operation with chopper, fed DC drive for DC motor drive and three phase drive system.

References
1. Electric Drive – and integrative approach, Ned Mohan, MNPERE, Minneapolis.
2. Power Electronic Control of AC motors-JMD Murphy & FG Turbull, Pergamon Press.
7. Control of Electrical Drive, W Leonhard, Springer.

BEKE 3663
POWER ELECTRONICS SYSTEMS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Discuss the operation of three phase rectifier, switching DC power supply and three phase inverter.
2. Investigate and analyze the characteristics and performance parameters of three phase rectifier, switching DC power supply and three phase inverter circuit
3. Choose a suitable converter type and topology to suit its application and power conversion technique required in power electronics.
4. Design three phase rectifier, switching DC power supply and three phase inverter for practical application.
5. Use simulation software such as PSpice/PSim/ Matlab to analyze three phase rectifier, switching DC power supply and three phase inverter

Synopsis
This subject will discuss about the principles and operation of three phase rectifier and inverter as well as the switching DC power supply. It includes uncontrolled and controlled three phase rectifier, switching DC power supply; transformer representation, isolated DC-DC converter and feedback control and various types of three phase inverter; six step inverter and voltage controlled inverter.

References
BEKE 4731
POWER ELECTRONICS & DRIVES LABORATORY II

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Integrate various process control plant with industrial control devices based on design requirement
2. Perform symmetrical, asymmetrical fault and transient stability, analysis using ERACS software.
3. Analyze the performance of Power Electronics & Drive system
4. Analyze and write the experimental results in technical report related to practical and simulation implementation systematically
5. Exhibit softskills such as communication skills, critical thinking, problem solving, teamwork, and ethics by peer to peer assessment.

Synopsis
The experiment and simulation works cover the switching scheme of current control PWM, voltage source inverter, fed drive, variable speed vector control of synchronous and induction motor drive. Students will carry out the practices of PLC programming using console and CX programmer software, motor control with PLC and simple automation process control with PLC at PLC and process control laboratory. Students will be exposed to such topics include power system modelling, symmetrical components, steady state operation, fault analysis, load flow & power control, and transient stability.

References
1. Electric Drives – an integrative approach, Ned Mohan, MNPERE, Minneapolis
2. Power Electronic Control of AC Motors – JMD Murphy & FG Turbull, Pergamon Press
7. Marizan Sulaiman, Analisis SYStEM POWER, Penerbit USM, 2004

BEKE 4763
MODERN ELECTRICAL DRIVES

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify power electronics conversion in AC Drive
2. Represent of induction machine (dynamics) in the stator and synchronously rotation reference frame.
3. Represent of synchronous machine dynamics in the stator and rotor reference frame.
4. Analyze the performance of AC motor drive
5. Design controller for AC drive system.

Synopsis
This course will discuss the electric drives components, machine reference frame principle, vector transformation, direct vector control of synchronous motor and induction motor drives, dynamic modelling of AC motors, three-phase PWM Voltage Source Inverter fed AC motor drives and direct torque induction motor drives. Closed-loop speed control, current control and voltage control strategies including hysteresis current control, ramp-comparison and space-vector modulation.

References

BEKE 4883
INDUSTRIAL POWER ELECTRONICS

Learning Outcomes
Upon completing this subject, the student should be able to:

1. Define application of power electronics in renewable energy, industrial appliance, consumer goods, transportation and power system.
2. Explain the basic operation, function and interaction between components and sub system used power electronic applications.
3. Integrate the power electronic components and system in industrial application.
4. Choose and justify the most suitable power electronics component for specified industrial application such as in renewable energy, industrial appliance, consumer goods, transportation and power system.
5. Model, analyze and develop the power electronic application system.

Synopsis
This course is about the principles of power generation, power application, and power quality improvement by means of power electronics devices. The basic design of power supply and gate drive will reviewed at glance. Students are required to be able to design and construct a power electronics hardware that is common in industrial application. The basic design of High Voltage Direct Current (HVDC), Flexible AC Transmission Systems (FACTS), Electric Hybrid Electric Vehicles and Active Filter will be exposed to the students.

References
BEKM SUBJECTS

BEKM 1121
BASIC ENGINEERING LABORATORY

Learning Outcomes
Upon completion of this laboratory subject, the student should be able to:
1. Describe the concept of electric and electronic engineering.
2. Measure voltage and current using basic engineering tools.
3. Construct a basic mechatronic/robotic engineering system.
4. Apply good ethical conduct and safety measures in engineering practice.
5. Design the mechatronic/robotic system by considering sustainable technology.

Synopsis
This subject will cover the introduction to teamwork, laboratory organization and laboratory safety and rules. Introduction to laboratory title, data measurement and analysis, report writing, discussion and presentation skills. Execute the experiments which includes the famous principles of science (Ohm’s Law, Newton’s Law and Hooke’s Law). Execute the experiments of parallel and series, measurement of voltage current and resistance. Execute the experiments of transistor as switch and diode. Construct the Light Seeking Robot (LSR). Operate the electrical devices such as oscilloscope and digital multimeter.

References
3. Subject file BEKE1133
4. Subject file BEKU 1123

BEKM 2321
MECHANICAL ENGINEERING LABORATORY

Learning Outcomes
Upon completion of this laboratory subject, the student should be able to:
1. Apply the knowledge learnt from the mechanical courses which include statics and mechanics of material, dynamics and mechanisms and fluid mechanics correctly.
2. Analyze the results obtained from the experiment accurately.
3. Write and present technical report related systematically.

Synopsis
This laboratory includes experiments/practical application for subjects of Material Statics & Mechanics, Dynamic & Mechanism and Engineering Materials.

References

BEKM 2342
INTRODUCTION TO MECHATRONICS SYSTEMS

Learning Outcomes
Upon completing this subject, the student should be able to:
1. Identify and explain the basic concept and the engineering applications of Mechatronics systems.
2. Describe and relate the basic Mechatronics system with to engineering application.
3. Identify the characteristics of Mechatronics system.
4. Relate machine and mechanism design with Mechatronic system.
5. Solve and analysis simple Mechatronics engineering problem.
Synopsis
Mechatronics system and instrumentation

Machine and Mechanism

References

BEKC 2421
CONTROL SYSTEM LABORATORY

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Identify and apply the appropriate tool and software during the laboratory session.
2. Investigate and analyze using scientific methods to solve Control System Engineering related experiments.
3. Demonstrate practical competence on control system apparatus such as Temperature Process Control Trainer.
4. Write an effective report.

Synopsis
The experiments are conducted in Control System Laboratory and Control System Simulation Laboratory. Students will carry out experiments and modeling of open loop and closed loop system by using Lab-Volt Temperature Process Control Trainer and Modular Servo System. Practical Application involving Real-time implementation and/or simulation and laboratories relatively to controller design, analysis of system stabilities, problem-based learning design using MATLAB, SIMULINK, Control System Toolbox and others toolboxes.

BEKM 2453
INSTRUMENTATION SYSTEMS

Learning Outcomes
Upon completion of this subject, students should be able to:
1. Identify numerous quantities and electrical units for measurements and instrumentation.
2. Design an AC/DC ammeter and voltmeter using PMMC technique
3. Design AC voltmeter rectifier for full-wave and half-wave.
4. Use oscilloscope for electrical waveform display and calculation.
5. Use the bridge technique to measure resistance, inductance and capacitance.
6. Differentiate and choose various functions of sensors and transducers in instrumentation application.

Synopsis
Measurement and error analysis. Analogue and digital instrumentation. AC and DC bridges. Oscilloscope and transducers. Analogue to digital and digital to analogue converters (ADC and DAC). Signal conditioning circuit and
processing. Data acquisition control. Technique and instrument to identify problems. Smart instruments. Telemetry systems.

References

BEKM 3531
MECHATRONICS ENGINEERING LABORATORY I

Learning Outcomes

Upon completion of this laboratory subject, the student should be able to:
6. Identify and describe basic characteristics and operation of sensors and electromechanical devices clearly.
7. Draw and simulate mechatronic systems that control electromechanical actuator and others output with feedback from sensors using a micro controller system correctly.
8. Construct mechatronic systems that control electromechanical actuator and others output with feedback from sensors using a micro controller system correctly.
10. Write effective technical report systematically and comparatively.

Synopsis

In this lab application, students are exposed to the lab works on using the motor drives for both DC and AC motors. It includes the design of the circuit for the motors and complete with the simulation based on the software selected. In addition, students are able to learn in software programming in microcontroller section in order to control the application of the DC and AC motors. At the end of the lab, students are going to involved in a mini project assignment based on the knowledge retain to design a simple electromechanical system from simulation until the implementation.

References

3. Subject file BEKM3553
4. Subject file BEKM3543
7. Refer FKM for BMCG 3643
8. Subject file BEK 4753
9. Subject file BEKC 4753

BEKM 3543
ELECTRO-MECHANICAL SYSTEM

Learning Outcomes

Upon completion of this subject, students should be able to:
1. Explain the type, construction, operation and application of electrical machines.
2. Explain the AC and DC drives of electrical machines.
3. Analyse the characteristics of electrical machines.
4. Analyse the performance of electrical machines.

Synopsis

This subject discusses the operation, construction, equivalent circuit and application of electrical machines such as DC, induction and synchronous machines. The parameters, characteristics, efficiency, control technique and performance of these electrical machines are analyzed. The AC and DC drives of electrical machines are also introduced.

References

BEKM 3553
MICROCONTROLLER TECHNOLOGY

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Explain the operations of a microcontroller.
2. Write, simulate and verify programs for a microcontroller. Use different function of a microcontroller such as timer, interrupt, pulse width modulation, analogue to digital converter and controlling input and output.
3. Use a microcontroller to control various sensors and actuators.

Synopsis
Basic microcontroller concepts and its difference compared to microprocessors. Microcontroller mind map, assembler, programming language and programming software. Stacking, sub-routines, interrupt and reset. Hardware, programming concept, programming application with dc motor hardware, step motor, sensor. Students will do microcontroller application using a simple mechatronic system.

References

BEKC 3563
INSTRUMENTATION

Learning Outcomes
Upon completion of this subject, students should be able to:
1. Explain the fundamentals of measurement such as systems of units, the use of statistics and error analysis.
2. Explain the use of different type of transducer such as position and speed, stress and strain and temperature.
3. Explain signal conditioning circuitries and processes in a measurement system such as filter, amplifier and A/D converter.
4. Explain the process of recording.
5. Design a basic measurement system.

Synopsis
A fundamental part of a mechatronic system is a measurement system. This subject discusses the fundamentals, circuitry and processes of a measurement system. The main contents are subdivided into three basic parts of a measurement system i.e. transducers, signal processing (or conditioning) and recording of data for subsequent processing.

References
5. Tony R. Kuphaldt, Lessons In Industrial Instrumentation, Creative Commons, 2009.

BEKM 3631
MECHATRONICS ENGINEERING LABORATORY II

Learning Outcomes
Upon completion of this laboratory subject, the student should be able to:
1. Design the actuation of a mechatronic system using pneumatic and hydraulic circuits.
2. Design the control of a mechatronic system using PLC.
3. Analyze and troubleshoot a mechatronic system.
4. Present ideas effectively.
5. Discover the knowledge from different resources.

Synopsis
Operation of a single-acting and double-acting cylinder, application of electro-hydraulic control, electro-pneumatic control technology, application of pressure relief valve and flow control valve, “AND” and “OR” operation, ladder diagram, console programming and mnemonic code, timer and counter application, pneumatic and hydraulic control using PLC

References
3. Refer FKM for BMCG 3643
4. Subject file BEKC 4753
5. Subject file BMCG 3643

BEKM 4741
MECHATRONICS ENGINEERING LABORATORY III

Learning Outcomes
Upon completion of this laboratory subject, the student should be able to:
1. Identify and describe robot specification and workspace properly.
2. Manipulate robot by using teach pendant/console and computer thru either offline or online programming method correctly.
3. Draw and simulate mechatronic/robotic system using modeling and simulation software correctly.
4. Measure performance such as accuracy and reliability of mechatronic/robotic system correctly.
5. Develop mechatronic/robotic system using modeling and simulation software properly.
6. Identify factors such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability when designing a mechatronic system properly.

Synopsis
This course will discuss Mechatronics teamwork project, prototype design using engineering tools such as CAD, MATLAB and 20 SIM, integration of sensor, controller and actuator, performance analysis, product realization

References
5. Subject file BEKM 4763
6. Subject file BEKM 4773
7. Subject file BEKM 4783
8. Subject file BEKC 4883

BEKM 4793
MECHATRONICS SYSTEMS DESIGN

Learning Outcomes
Upon completing this subject, the student should be able to:
1. Describe the principles of Mechatronics product system design and development.
2. Design the product through the principles of product design and development.
3. Analyze problems and synthesis solutions in design process.
4. Demonstrate ability to develop Mechatronics prototype through CAD tools.

Synopsis
Mechatronics team work design which cover design, mechanical, electric, electronic and software. Provides the students with an appreciation of industrial practice and for the roles played by members of mechatronics product development teams. Process design which includes concept selection, component selection, compatibility, interfacing, Human Machine Interface, ergonomic, aesthetic and safety in designing a typical mechatronics product. Design approaches in team work toward integration of elements in mechatronics systems such as sensor, dedicated or embedded controller, drive and actuation control system, mechanism and structure to design a complete mechatronics product.

References
3. Dobrivoje Popovic, Mechatronics in Engineering Design And Product Development, Mareel Dekker,1999

BEKM 4783
MACHINE VISION

Learning Outcomes
Upon completion of this subject, students should be able to:
1. Describe the application areas, restrictions, and structure of machine vision systems
2. Operate on digital images: capture them and extract basic visual information from images
3. Analyze and apply the basics of machine learning and approaches to decision making using a computer.
4. Use of image processing and image understanding tools

Synopsis
The aim of this course is to introduce the theory, applications and techniques of machine vision to students, and to provide students with an understanding of the problems involved in the development of machine vision systems. The course begins with low level processing and works its way up to the introduction of image interpretation. This approach is taken because image understanding originates from a common database of information. The learner will be required to apply their understanding of the concepts involved through the process of building applications that manipulate bi-level and greyscale images through the use of suitable packages (e.g. Matlab or OpenCV).

References
BEKM 4823
DATA COMMUNICATIONS & COMPUTER NETWORKING

Learning Outcomes
Upon completion of this subject, student should be able to:
1. Explain and describe the concept of computer system network, communication model, network models, network components, network topology, network technology and applications.
2. Explain, describe and apply the coding schemes, transmission modes, transmission methods, communication modes, error detection methods, flow control, and error control in a network.
3. Explain and describe the OSI model, IEEE 802.x model, transmission media, network services, repeater, bridges, router and gateways.
4. Explain, describe and apply the network operation and technology of LAN, wireless LAN, WAN and routing.
5. Design, install, configure and troubleshoot a wired and wireless network.

Synopsis

References
BEKU SUBJECTS

BEKU 1121
BASIC ELECTRICAL & ELECTRONICS LABORATORY

Synopsis
This laboratory includes experiments/practical application for subjects of Electrical Circuit, Electronics Devices, Digital Electronics & System and Instrumentation & Measurement.

References
4. Subject file BEKP 2323
5. Subject file BEKU 2333
6. Subject file BEKU 1243

BEKU 1123
ELECTRICAL CIRCUIT I

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Grasp the fundamental electric laws and demonstrate it by being able to calculate, as well as measure voltage, current and power associated to any element or branch in an electric circuit.
2. Apply circuit analytical methods and theorems to analyze dc circuits and in ac circuits using phasors.
3. Assemble electrical components correctly including troubleshooting for defective parts and faulty connections.
4. Simulate the operation of electric circuit using simulation software.

Synopsis
This subject introduces the students to Ohm’s Law, Kirchhoff’s Laws and use them to calculate current, voltage and power in any element or in any branch. Following this the students will learn the analytical methods namely mesh and nodal analysis. The use of theorems like Thevenin, Norton, Superposition, Reciprocity and the Maximum Power Transfer will follow next. The applications of the above tools will cover both dc and ac circuits. This subject will be supported by laboratory works to impart to the students some basic practical skills.

References

BEKU 1221
ANALOGUE & DIGITAL ELECTRONICS LABORATORY

Synopsis
The laboratory experiment consists of practical and simulation activities which is conducted to enhance student skills and theoretical knowledge in digital electronics system and analogue electronics topics. The experiments include small signal amplifier, power amplifier, oscillator, basic gates, combinational logic circuit, binary adder, and flip-flop.

References
3. Subject file BEKU 1243
4. Subject file BEKE 1243

BEKU 1243
DIGITAL ELECTRONICS & SYSTEMS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe the common forms of number representation in digital electronics circuits and differentiate between digital and analogue representations.
2. Implement simple logic operations using combinational logic circuits.
3. Identify, formulate, and solve the logical operation of simple arithmetic and other MSI (Medium Scale Integrated Circuit).
4. Apply the concepts of synchronous state machines using flip flop.
5. Define memory terminology and memory decoding process.
Synopsis
This subject discusses about number systems & codes, Boolean algebra, logic families and the characteristic of logic gates, combinational logic, analysis and design, MSI combinational logic circuit, flip-flops, counter and shif-register, synchronous and asynchronous sequential circuit. Initial knowledge on memory terminology will be also discussed at the end of the course content.

References
1. Thomas L. Floyd, Digital Fundamentals, Prentice Hall, 10th Ed.

BEKU 1231
ELECTRICAL & ELECTRONICS LABORATORY

Synopsis
This laboratory includes experiments/practical application for subjects of Electrical Circuit, Electronics Devices, Digital Electronics & System and Instrumentation & Measurement.

References
4. Subject file BEKP 2323
5. Subject file BEKU 2333
6. Subject file BEKU 1243

BEKU 2321
ELECTRICAL TECHNOLOGY LABORATORY

Synopsis
Students will conduct the experiment to support the theory such as to observe the capacitor charge and discharge process, build and analyze the second order circuit using PSPICE. Proof the resonant circuit, filter circuit and two ports network. The experiments also include the single phase and three phase circuits with resistive and inductive loads and measurement of voltage, current, power, power factor and single phase transformer.

References

BEKU 2333
ELECTRICAL CIRCUIT II

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Describe first order for RL and RC circuits transient analysis.
2. Describe second order for RLC circuits transient analysis.
3. Convert time domain into s-domain using Laplace transforms method and analyze its frequency response.
5. Determine the parameters of two-port network connected in series, parallel or cascade.

Synopsis
This subject exposes students to the application of several tools in analyzing electrical circuits, such as the Laplace transform and two ports network. The students are required to use the tools to analyze transient and frequency response in electrical circuit.

References
BEKU 2422
ENGINEERING REPORT

Synopsis
This subject is intended to enhance various basic electrical industrial skills that mostly required by many sectors related to electrical fields. It will focus on the development of technical and soft-skills and covering modules such as basic electrical wiring, motor starter and relay control, basic pneumatic, electronic circuit design works, programmable logic controller and application of engineering software such as AutoCAD and PSpice.

Assessment is focused on the aspect of knowledge, skills and attitude of the students in the form of rubric.

References
1. Akta Keselamatan dan Kesihatan Pekerjaan 1994
3. IEEE Wiring Regulation, 18th Edition
4. Akta Bekalan Elektrik (447 pindaan 2001)
5. Abdul Samad, Amalan Pemasangan Elektrik, DBP
6. Acceptability of Electronic Assemblies (Revision C, 2000)

BEKU 2432
ENGINEERING PRACTICE II

Synopsis
This subject is aimed to expose students to the most of vital component related to electrical works such as instrumentation, metering, electrical motor winding process, testing and measurement, electrical energy management, building maintenance services as well as safety, health and environment at the workplace.

Subject implementation including short courses to be conducted by the industry, case studies, project in a small size, demonstration and technical report

References
1. Akta Keselamatan dan Kesihatan Pekerjaan 1994
3. IEEE Wiring Regulation, 18th Edition
4. Akta Bekalan Elektrik (447 pindaan 2001)
5. Abdul Samad, Amalan Pemasangan Elektrik, DBP
6. Acceptability of Electronic Assemblies (Revision C, 2000)

BEKU 2431
ELECTRICAL ENGINEERING LABORATORY I

Synopsis
This subject will cover on the theories about power electronic, electric machine, control system, instrumentation system and microprocessor. Among the experiments that will be conducted are electric converter, machine electric characteristics, testing of AC/DC circuit, performance test of open loop/closed loop, microprocessor applications as well as simulation software in particular topics.
References

BEKU 3696
INDUSTRIAL TRAINING

Learning Outcomes
Upon completion of this subject, the students should be able to:
1. Adapt with the real working environment, in terms of operational, development and management system.
2. Apply knowledge learned in the university.
3. Write a report on daily activities in the log book systematically in the related field.
4. Embrace and practice professional ethics.
5. Improve their soft skills and creativity.
6. Recognize potential engineering problems to be solved in the final year project.
7. Present reports orally and written on the working experiences.

Synopsis
For Industrial training, students will gain experience in the organization/industry for a required certain number of weeks. During the designated period, they will apply knowledge learned in the university and increased the related skills required in their future profession.

References
1. Garis Panduan Latihan Industri, Pusat Universiti Industri.

BEKU 4792
FINAL YEAR PROJECT I

Learning Outcomes
Upon completion of this subject, student should be able to:
1. Identify and describe the problem and scope of project clearly.
2. Select, plan and execute a proper methodology in problem solving.
3. Work independently and ethically.
4. Present the preliminary results in written and in oral format effectively.

Synopsis
This subject is the first part of the Final Year Project. In this subject, students are expected to propose a project under a supervision of a lecturer. Students need to carry out the project, present the proposed project and submit a progress report at the end of semester

References
1. Guidelines of the Implementation of FYP.
3. Any related materials based on student’s project

BEKU 4883
ENGINEERING ETHICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Discuss critically the moral and ethical theories leading to engineering ethics.
2. Familiarize themselves with codes of ethics and inter-relate them through examples of case studies.
3. Develop strong commitment of professional and ethical responsibilities.
4. Inculcate special regards for health, safety and the environment.
5. Manage and resolve ethical problems in client/engineer/society relationship in carrying out duty as a professional engineer.
6. Review case studies and analyze the situations that have occurred.

Synopsis
Introduction to scope and goal of engineering ethics. Moral thinking and ethical theory. The laws and ethical theory in engineering practice. The responsibility of providing service,

References

BEKU 4894
FINAL YEAR PROJECT II

Learning Outcomes
Upon completion of this subject, student should be able to:
1. Collect and present data into meaningful information using relevant tools
2. Demonstrate appropriate skills required to solve the problem adequately
3. Plan and execute project implementation systematically
4. Work independently and ethically
5. Present the results in written and in oral format effectively
6. Identify basic entrepreneurship skills in project management

Synopsis
This subject is continuation from Final Year Project 1. Student should complete the project to obtain outcome either in hardware, software or studies. Student needs to present the project outcomes, and write a final report in thesis format. Student will be assessed based on performance, projects’ quality, presentation and project report.

References
1. Guidelines of the Implementation of FYP.
3. Any related materials based on student’s project.
SERVICE SUBJECTS (FTMK)

BITG 1113
COMPUTER PROGRAMMING

Learning Outcomes
In the end of the course, student will be able to:
1. Explain terminology of computer hardware and software
2. Identify the language elements used in C++
3. Build an algorithm to solve programming problems.
4. Design and implement simple programming using programming structure such as conditions, loops and function.
5. Create programs by using suitable techniques.
6. Using computer system to edit, arrange and execute programs.

Synopsis

References

SERVICE SUBJECTS
(FPTT, PBPI & CO-CURRICULUM UNIT)

BLHW 1013
FOUNDATION ENGLISH

Learning Outcomes
In the end of the course, student will be able to:
1. Infer information from various oral texts of different complexity levels.
2. Respond to stimuli and justify reasons individually and in group discussions on a wide range of contemporary issues.
3. Apply information in cloze texts based on passages from various sources.
4. Produce an extended writing and a report based from non-linear sources.

Synopsis
This course is designed to help students improve their proficiency in English language and to communicate effectively in both spoken and written forms. It is tailored to the four components, namely Listening, Speaking, Reading and Writing of the Malaysian University English Test (MUET). Grammar component is taught in an integrated approach to build confidence among the learners to become efficient speakers of English in their tertiary education and workplace environment. The Cooperative Learning approach is incorporated in this course.

Pre-requisite
Students with MUET Band 1 and Band 2 only.

References:
BLHW 2403
TECHNICAL ENGLISH

Learning Outcomes
In the end of the course, student will be able to:
1. Distinguish the use of tenses, run-ons, fragments, modifiers and parallelism.
2. Summarise and paraphrase main ideas.
3. Write a proposal as well as progress and project reports in a group.
4. Organise and present project report in groups.

Synopsis
This course is content-based in nature and aims to equip students with the necessary language skills required to write various reports. As this course prepares students for the mechanics of the different genres of writing, the emphasis is on proposal, progress and project reports by employing Student-Centred Learning approach. It also introduces students to the elements of presentation as well as provides them with the necessary grammar skills in writing.

References

BLHW 3403
ENGLISH FOR PROFESSIONAL COMMUNICATION

Learning Outcomes
In the end of the course, student will be able to:
1. Select and apply the appropriate tenses, parallelism, direct and indirect speech, transitional markers and misplaced modifiers.
2. differentiate between facts and opinions, and use vocabulary relevant to its context.
3. respond to interviews and participate in meetings.
4. Demonstrate communication and oral presentation skills.
5. Produce resumes application letter and recommendation report.

Synopsis
This course is designed to develop oral communication, as well as enhance students' level of English literacy which will be beneficial to their professional careers. It also aims to equip students with the communication skills necessary for the workplace. It complements the skills taught in BLHW 3403. Grammar will be taught implicitly in the course content. Students will acquire effective presentation skills as well as gain experience in mock interviews prior to seeking employment. The Student-Centred Learning approach is employed in teaching and learning process.

References

- BKKX XXXX
 CO-CURRICULUM I & II
- BLHW 1722
 SCIENCE & TECHNOLOGY PHILOSOPHY
 OR
- BLHW 1732
 SOCIO ECONOMIC DEVELOPMENT OF MALAYSIA
- BLHL 1XX2
 THIRD LANGUAGE
- BLHC 3012
 TECHNOCRACY COMMUNICATION SKILLS
Material Mechanics
Introduction to types of structures, types of supports, the concept of stress, strain, shear force, bending moment, bending beam theory, torque theory, shear flow, combination of load and beam deflection.

References

BMCG 1253
DYNAMIC & MECHANISM

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. State the concept and principles of basic kinematics and particle’s kinetics and rigid body, movement transmission system, balancing system and gyroscope movement.
2. Conduct and analyze experiments related to dynamics and mechanisms.
3. Understand the introduction and basic principles of dynamics and mechanisms.

Synopsis
Introduction and basic principles of dynamics, particle’s kinematics and rigid body, moment of inertia, transmission system based on friction (conveyor, brake and grip), dynamic system’s balance (rotating body and reciprocal movement body), simple harmonic movements and vibration (one degree freedom vibration, free vibration, free damped vibration and forced damped vibration), speed control (cycle and centrifugal).

References
BMCG 2343
INTRODUCTION TO MECHANICAL ENGINEERING

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Analyze the mechanical properties of materials
2. Describe the basic concepts of dynamics and thermodynamics
3. Conduct and demonstrate the basic practical works of mechanical system
4. Define basic terms of thermodynamics and identify systems, properties and processes.
5. Use property tables and draw property diagrams of pure substances to define the state of the system.
6. Apply the concept of First Law of Thermodynamics in Closed Systems and Control Volumes.
7. Analyze the concept of Second Law of Thermodynamics to determine the performance of heat engine, refrigerators and heat pumps.
8. Describe different modes of heat transfer: conduction, convection and radiation, and calculate the thermal conductivity, heat transfer coefficients, heat transfer through plates, cylinders and spheres.

Synopsis

References

BMCG 2372
FLUID MECHANICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Define and explain the terms of fluid and its usage.
2. Explain the concept, laws and equations related to fluid mechanics and verify the concept.
3. Conduct experiments which are related to fluid mechanics.

Synopsis
Basic introduction to the characteristics, physical and concept of fluid pressure; Methods of solution to the hydrostatic pressure and its application in pressure measurement; Analyse static force and its relation to floating, sinking and analysis on floating force; Introduction to analysis of dynamic flow with technique in solving flow problems; Solution on Bernoulli theorem in flow, flow rate, mass/volume loss in piping network; Analyse dimension and its equations.

References

BMCG 3512
ENGINEERING GRAPHICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Learn engineering drawing techniques and drawing skills using the AUTOCAD software.
2. State about basic CAD, orthographic, isometric, machine theory and detailed drawing.
3. Draw geometric drawings and engineering drawings using mechanical drawing instruments and AUTOCAD software.

Synopsis
Basic CAD, geometric drawing, orthographic, isometric, machine theory, detailed drawing, orthographic, machine drawing and detailed drawing will be completed using a computer through manipulation, solid modelling method in CAD (2D and 3D).

References

BMCG 3522
ENGINEERING MATERIALS

Learning Outcomes
Upon completion of this subject, the student should be able to:
1. Understand and state the terms used in material engineering and its importance.
2. Explain the theory and practical for material characteristics, material selection, material strength analysis and manufacturing design.
3. Conduct hardness study, impact test, compression test, Poisson’s ratio and bending stress

Synopsis
Introduce students to the science and engineering of materials, material structure classification, material characteristics, material physical characteristics, types of metal alloy, use, process and analysis of material's strength.

References

BMCG 3643
PNEUMATIC & HYDRAULIC SYSTEMS

Learning Outcome
1. Describe fundamental principles that govern the behavior of fluid power systems.
2. Explain the common hydraulic and pneumatic components, their use, symbols and their applications in industry.
3. Analyze mathematical models of hydraulic and pneumatic circuits in order to study performance of the system.
4. Design the hydraulic and pneumatic circuit manually or using related computer software.
5. Construct the hydraulic and pneumatic circuit and their electrical circuit.

Synopsis
This course covers the introduction of the hydraulic and pneumatic systems, types of pump, compressor and their working principles, types of valve, actuator and their usage, performance of the fluid power system, others fluid power system ancillaries and sensors, fluid power circuit design and analysis with manual control and electrical control, fluid power symbols, the usage of computer software to design and simulate the fluid power circuit, the usage of programmable logic controller in fluid power circuit design and the application of fluid power in robotic and mobile hydraulic.

References
BMCG 3653
THERMODYNAMICS & HEAT TRANSFER

Learning Outcomes
After completion of the course, the students should be able to:
1. Define basic terms of thermodynamics and identify systems, properties and processes.
2. Use property tables and draw property diagrams of pure substances to define the state of the system.
3. Apply the concept of First Law of Thermodynamics in Closed Systems and Control Volumes.
5. Describe different modes of heat transfer: conduction, convection and radiation, and calculate the thermal conductivity, heat transfer coefficients, heat transfer through plates, cylinders and spheres.
6. Apply the concept of heat transfer for cooling of electronics and hydraulic systems.

Synopsis

Reference

SERVICE SUBJECTS (FKM)
BMCG 1123
MATERIAL MECHANICS & STATICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
4. State the basic concept of force and material mechanics.
5. Analyze the force on a mechanical system.
6. Understand and elaborate the forces on a mechanical system.

Synopsis
Statics
Introduction and basic concepts, unit system, scalar and vector, forces system, force cohesion and coupling/moment, particle in balance, free body diagram, rigid body balance, distributed forces, center of gravity and centroid, truss system analysis, simple frame and friction.

Material Mechanics
Introduction to types of structures, types of supports, the concept of stress, strain, shear force, bending moment, bending beam theory, torque theory, shear flow, combination of load and beam deflection.

References

BMCG 1253
DYNAMIC & MECHANISM

Learning Outcomes
Upon completion of this subject, the student should be able to:
4. State the concept and principles of basic kinematics and particle's kinetics and rigid body, movement transmission system, balancing system and gyroscope movement.
5. Conduct and analyze experiments related to dynamics and mechanisms.
6. Understand the introduction and basic principles of dynamics and mechanisms.
Synopsis
Introduction and basic principles of dynamics, particles’s kinematics and rigid body, moment of inertia, transmission system based on friction (conveyor, brake and grip), dynamic system’s balance (rotating body and reciprocal movement body), simple harmonic movements and vibration (one degree freedom vibration, free vibration, free damped vibration and forced damped vibration), speed control (cycle and centrifugal).

References

BMCG 2343
INTRODUCTION TO MECHANICAL ENGINEERING

Learning Outcomes
Upon completion of this subject, the student should be able to:
9. Analyze the mechanical properties of materials
10. Describe the basic concepts of dynamics and thermodynamics
11. Conduct and demonstrate the basic practical works of mechanical system
12. Define basic terms of thermodynamics and identify systems, properties and processes.
13. Use property tables and draw property diagrams of pure substances to define the state of the system.
15. Analyze the concept of Second Law of Thermodynamics to determine the performance of heat engine, refrigerators and heat pumps.
16. Describe different modes of heat transfer: conduction, convection and radiation, and calculate the thermal conductivity, heat transfer coefficients, heat transfer through plates, cylinders and spheres.

Synopsis

References

BMCG 2372
FLUID MECHANICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
4. Define and explain the terms of fluid and its usage.
5. Explain the concept, laws and equations related to fluid mechanics and verify the concept.
6. Conduct experiments which are related to fluid mechanics.

Synopsis
Basic introduction to the characteristics, physical and concept of fluid pressure; Methods of solution to the hydrostatic pressure and its application in pressure measurement; Analyse static force and its relation to floating, sinking and analysis on floating force; Introduction to analysis of dynamic flow with technique in solving flow
problems; Solution on Bernoulli theorem in flow, flow rate, mass/volume loss in piping network; Analyse dimension and its equations.

References

BMCG 3512
ENGINEERING GRAPHICS

Learning Outcomes
Upon completion of this subject, the student should be able to:
4. Learn engineering drawing techniques and drawing skills using the AUTOCAD software.
5. State about basic CAD, orthographic, isometric, machine theory and detailed drawing.
6. Draw geometric drawings and engineering drawings using mechanical drawing instruments and AUTOCAD software.

Synopsis
Basic CAD, geometric drawing, orthographic, isometric, machine theory, detailed drawing, orthographic, machine drawing and detailed drawing will be completed using a computer through manipulation, solid modelling method in CAD (2D and 3D).

References

BMCG 3522
ENGINEERING MATERIALS

Learning Outcomes
Upon completion of this subject, the student should be able to:
4. Understand and state the terms used in material engineering and its importance.
5. Explain the theory and practical for material characteristics, material selection, material strength analysis and manufacturing design.
6. Conduct hardness study, impact test, compression test, Poisson's ratio and bending stress.

Synopsis
Introduce students to the science and engineering of materials, material structure classification, material characteristics, material physical characteristics, types of metal alloy, use, process and analysis of material's strength.

References

BMCG 3643
PNEUMATIC & HYDRAULIC SYSTEMS

Learning Outcome
6. Describe fundamental principles that govern the behavior of fluid power systems.
7. Explain the common hydraulic and pneumatic components, their use, symbols and their applications in industry.
8. Analyze mathematical models of hydraulic and pneumatic circuits in order to study performance of the system.
9. Design the hydraulic and pneumatic circuit manually or using related computer software.
10. Construct the hydraulic and pneumatic circuit and their electrical circuit.

Synopsis
This course covers the introduction of the hydraulic and pneumatic systems, types of pump, compressor and their working principles, types of valve, actuator and their usage, performance of the fluid power system, others fluid power system ancillaries and sensors, fluid power circuit design and analysis with manual control and electrical control, fluid power symbols, the usage of computer software to design
and simulate the fluid power circuit, the usage of programmable logic controller in fluid power circuit design and the application of fluid power in robotic and mobile hydraulic.

References

BMCG 3653
THERMODYNAMICS & HEAT TRANSFER

Learning Outcomes
After completion of the course, the students should be able to:
7. Define basic terms of thermodynamics and identify systems, properties and processes.
8. Use property tables and draw property diagrams of pure substances to define the state of the system.
10. Analyze the concept of Second Law of Thermodynamics to determine the performance of heat engine, refrigerators and heat pumps.
11. Describe different modes of heat transfer: conduction, convection and radiation, and calculate the thermal conductivity, heat transfer coefficients, heat transfer through plates, cylinders and spheres.
12. Apply the concept of heat transfer for cooling of electronics and hydraulic systems.

Synopsis

Reference
ASSOCIATE PROF. DR. ZULKIFILIE BIN IBRAHIM
Dean
โทรศัพท์: drzulkifilie@utem.edu.my
โทรสาร: 2200
ประจำตัว: C/1-14 & A/1-19

HYREIL ANUAR BIN KASDIRIN
Deputy Dean (Academic)
โทรศัพท์: hyreil@utem.edu.my
โทรสาร: 2202 / 2218
ประจำตัว: C/1-15 & B/1-6

IR MD NAZRI BIN OTHMAN
Deputy Dean (Research & Postgraduate Studies)
โทรศัพท์: nazri@utem.edu.my
โทรสาร: 2201 / 2232
ประจำตัว: C/1-13 & A/1-5

ABD. AZIZ BIN HJ. MUSTAFA
Chief Assistant Registrar
Unit of Academic & Student Development
โทรศัพท์: abdulaziz@utem.edu.my
โทรสาร: 2203
ประจำตัว: C/1-2

JUNAIDAH BINTI KASIM
Chief Assistant Registrar
Unit of Administrative & Finance
โทรศัพท์: junaidah@utem.edu.my
โทรสาร: 2228
ประจำตัว: C/1-5

MARIANA BINTI MOHD AMIN
Accountant Assistant
Unit of Administrative & Finance
โทรศัพท์: mariana.amin@utem.edu.my
โทรสาร: 2211
ประจำตัว: C/1-20

ADAWIYAH BINTI MD. JANI
Admin Assistant Officer
Unit of Academic & Student Development
โทรศัพท์: adawiyah@utem.edu.my
โทรสาร: 2270
ประจำตัว: C/G-6

SITI AISHAH BINTI MAT ZAIN
Senior Admin Assistant
Unit of Administrative & Finance
โทรศัพท์: aishah@utem.edu.my
โทรสาร: 2246
ประจำตัว: C/1-20

KAMISAH BINTI JALIL
Office Secretary
Unit of Administrative & Finance
โทรศัพท์: kamisah@utem.edu.my
โทรสาร: 2345
ประจำตัว: C/1-20

NORAIN BINTI HANA
Office Secretary
Unit of Administrative & Finance
โทรศัพท์: norain.hana@utem.edu.my
โทรสาร: 2245
ประจำตัว: C/1-20
ROHANA BINTI ABU BAKAR
Admin Assistant
Unit of Academic & Student Development
☎️: rohana2@utem.edu.my
☎️: 2269
باك: C/G-6

SUHANA BINTI ARIFIN
Admin Assistant
Unit of Administrative & Finance
☎️: suhana@utem.edu.my
☎️: 2289
باك: C/1-20

SITI SUHAILIN BINTI MOHD SIDEK
Admin Assistant (Finance)
Unit of Administrative & Finance
☎️: suhailin@utem.edu.my
☎️: 2211
باك: C/1-20

MOHD SAFAR BIN ADIM
Admin Assistant
Unit of Administrative & Finance
☎️: mohdsafar@utem.edu.my
☎️: 2225
باك: C/1-20

ABU ZAR BIN YASHIM
Office General Assistant
Unit of Administrative & Finance
☎️: abuzar@utem.edu.my
☎️: 2225
باك: C/1-20

ZULKIFLI BIN HUSSIN
Office General Assistant
Unit of Academic & Student Development
☎️: zulkiflih@utem.edu.my
☎️: 2269
باك: C/G-6
AZHAR BIN AHMAD
Head of Department / Lecturer
M.Sc. Electrical Engineering, UTeM
B.Eng. in Electrical & Electronic Engineering, University of Western Australia
Area of Interest : Power Quality, Renewable Energy and Energy Efficiency
☎ : azharahmad@utem.edu.my
☎ : 2204/ 2294
📮 : C/1-3 & B/2-5

MOHD HENDRA BIN HAIRI
Senior Lecturer
M.Eng in Electrical Engineering, UTM
B.Eng in Electrical Engineering, USM
Area of Interest : Power systems (protection)
☎ : hendra@utem.edu.my
☎ : 2325
📮 : A/2-22

ENGR. PROF. DR. MARIZAN BIN SULAIMAN
Professor
Ph.D, M.Sc., B.Sc., in Electrical Engineering University of Missouri-Columbia (UMC), USA
Area of Interest : Power System Modeling, Control and Automation, Energy Efficiency and E-Learning
☎ : marizan@utem.edu.my
☎ : 2209
📮 : B/1-21

FARHAN BIN HANAFFI
Lecturer
M.Eng. (Power), UTM
B.Eng. (Electrical Engineering) UTM
Area of Interest : High Voltage Engineering & Power System Analysis
☎ : farhan@utem.edu.my
☎ : 2263
游戏当中 : B/G-20

KHAIIRUL ANWAR BIN IBRAHIM
Senior Lecturer
M.Eng. (Electric Power Engineering), Rensselaer Polytechnic Institute, NY
B.Sc. (Electric Power Engineering), Rensselaer Polytechnic Institute, NY
Area of Interest : Power System, Substation Automation, Protection & Control
☎ : khairulanwar@utem.edu.my
☎ : 2227/ 2349
游戏当中 : C/1-18 7 & A/3-6

NORHAFIZ BIN SALIM
Lecturer
M.Eng. in Electrical Engineering (Power), UTM
B.Eng. in Electrical Engineering (Power Industry), UTeM
Area of Interest : Power electronics & Flexible Transmission System, Power Systems
☎ : norhafiz@utem.edu.my
☎ : 2253
游戏当中 : B/G-8

AZIAH BINTI KHAMIS
Lecturer
M.Sc. Power Distribution, Newcastle University
B.Eng in Electrical & Electronics Engineering (Electrical Power), UPM
Area of Interest : Power Quality, Power Distribution
☎ : aziah@utem.edu.my
☎ : 2256
游戏当中 : B/G-3

KYAIRUL AZMI BIN BAHARIN
Lecturer
M. Eng. Sc Electrical Engineering (Power Systems) UNSW, Australia
Bachelor of Electrical Engineering (Industrial Power), KUTKM
Area of Interest : Renewable Energy, Smart Grid
☎ : kyairulazmi@utem.edu.my
☎ : 2293
游戏当中 : B/2-6
AINE IZZATI BINTI TARMIZI
Lecturer
Master Of Science (Electrical Power Engineering With Business) University of Strathclyde, Glasgow, UK
B.Eng.(Electrical Engineering), UTeM
Area of Interest : Power System, High voltage and EMC
☎ : alineizzati@utem.edu.my
☎ : 2358
✉ : A/3-8

AIMIE NAZMIN BIN AZMI
Lecturer
B.Eng. (Hons) Electrical Engineering (Industrial Power), UTeM
Area of Interest : Renewable Energy, Power System, Energy
☎ : aimienazmin@utem.edu.my
☎ : 2331
✉ : B/3-9

ANIS NIZA BINTI RAMANI
Lecturer
Master of Engineering (Electrical-Power), UTM
Bachelor of Engineering (Hons) in Electrical (Industrial Power), UTeM
Area of Interest : Power System, High Voltage Engineering
☎ : anisniza@utem.edu.my
☎ : 2318
✉ : A/2-10

JUNAINAH BT SARDI
Lecturer
Master of Science (Electrical Engineering), UPM
B.Eng. (Electrical Engineering), UTeM
Area of Interest : Power Systems, Deregulated Electricity Market, Lightning and Grounding System, High Voltage Engineering
☎ : junainah@utem.edu.my
☎ : 2265
✉ : B/G-22

MOHAMAD NA’IM BIN MOHD NASIR
Lecturer
Master of Engineering (Electrical-Power), UTM
B.Eng(Electrical Engineering), UTeM
Area of Interest : Renewable Energy, Power Systems
☎ : mohamad.naim@utem.edu.my
☎ : 2351
✉ : C/3-3

NUR HAKIMAH BINTI AB AZIZ
Lecturer
M.Eng. in Electrical Power Engineering, UniSA, Australia
B.Eng in Electrical Engineering, UTM
Area of Interest : Virtual Instrument (VI), Transformer Monitoring, Distributed Generation
☎ : hakimah@utem.edu.my
☎ : 2355
✉ : A/G-22

INTAN AZMIRA BINTI WAN ABDUL RAZAK
Lecturer
Master of Engineering (Electric-Power), UTM
B.Eng, in Electrical & Electronics, Cardiff University
Industrial Diploma in Mechatronics, German-Malaysian Institute
Area of Interest : Power System Planning
☎ : intan.azmirai@utem.edu.my
☎ : 2355
✉ : A/3-4

AZHAN BIN AB. RAHMAN
Lecturer
Master of Engineering Studies (Electrical), University of Wollongong
B.Eng. in Electrical & Electronics, Cardiff University
Industrial Diploma in Mechatronics, German-Malaysian Institute
Area of Interest : Power Engineering
☎ : azhanrahamani@utem.edu.my
☎ : 2364
✉ : A/3-18

MOHD KHAIRI BIN MOHD ZAMBR
Lecturer
M.Eng. in Electrical Engineering (Electrical Energy & Power System), UM
Bachelor of Electrical Engineering (Industrial Power), KUTKM
Area of Interest : Power system engineering (transient analysis & power quality)
☎ : khairi_z@utem.edu.my
☎ : 2340
✉ : B/3-16

ZUL HASRIZAL BIN BOHARI
Tutor
Bachelor of Electrical & Electronic Engineering, UKM
Area of Interest : Power System Protection, High Voltage, Artificial Intelligent
☎ : zulhasrizal@utem.edu.my
☎ : 2348
✉ : A/3-8
NURZAWANI BINTI SAHARUDIN
Lecturer
M.Eng in Engineerin (Electrical Energy and Power System), UM
B.Eng in Electrical Engineering (Industrial Power), UTeM
Bidang Penyelidikan : Power Systems & Flexible Transmission System
☎ : nurzawani@utem.edu.my
팩 : 2229
fax : A/1-2

MOHD FIRDAUS BIN GHAZALI
Assistant Engineer/ Senior Technician
☎ : mfrdhaus@utem.edu.my
팩 : 2395

AHAMAD FUAD BIN JAAPAR
Technician
☎ : fuad@utem.edu.my
팩 : 2394

MOHD HEDZUAN BIN HASBULLAH
Technician
☎ : hedzuan@utem.edu.my
팩 : 2397

MOHD RAFIDAN BIN MOHAMD
Technician
☎ : rahidan@utem.edu.my
팩 : 2384

MOHD YUSRI BIN JAMIL
Senior Technician
☎ : yusri@utem.edu.my
팩 : 2399

MOHD FADHIL BIN IBRAHIM
Technician
☎ : mohdfadhil@utem.edu.my
팩 : 2370

SAHRIL BIN BAHAR
Technician
☎ : sahril@utem.edu.my
팩 : 2371

MOHD WAHYUDI BIN MD HUSSAIN
Technician
☎ : wahyudi@utem.edu.my
팩 : 2378
MOHD SUFIAN BIN OMAR
Technician
☎ : msufian@utem.edu.my
☎ : 2397

MUSA BIN ABD. KARIM
Technician
☎ : musakarim@utem.edu.my
☎ : 2384

GAN CHIN KIM
Lecturer
Ph.D (Study leave) Imperial College London
M.Eng. (Electrical Engineering), UTM
B.Eng. (Electrical Engineering), UTM
Area of Interest : Power Distribution Network Planning, Optimisation and Efficient Integration of Distributed Technologies
☎ : ckgan@utem.edu.my
☎ : 2309
在职 : A/2-1

HIDAYAT BIN ZAINUDDIN
Lecturer
M.Sc. in Electrical Power Engineering with Business, University of Strathclyde, UK
B.Eng. (Electrical), UTM
Area of Interest : Condition Monitoring, Insulation Coordination and Diagnostic Testing of High Voltage Apparatus, Optimization of Power System and Generation Control, Renewable Energy System (Small Scale Hydro/Wind Power)
☎ : hidayat@utem.edu.my
☎ : 2344
在职 : B/3-20

MOHD SHAHRIL BIN AHMAD KHIAR
Tutor
B.Sc. in Electrical Engineering (Electrical and Electronics), Korea University
Diploma in Electrical System Engineering, Dong Yang Technical College, South Korea
Area of Interest : High Voltage, Nanotechnology
☎ : mohd.shahril@utem.edu.my
☎ : 2261
在职 : B/G-17

ZIKRI ABADI BIN BAHARUDIN
Lecturer
M.Sc., B.Eng. in Electrical Engineering, UTM
Dip. In Electrical Engineering, UiTM
Area of Interest : Industrial Power
☎ : zikri@utem.edu.my
☎ : 2204
在职 : C/1-3

ELIA ERWANI BINTI HASSAN
Lecturer
M.Sc. in Electrical Engineering (Mechatronics & Automatic Control), UTM
B.Eng. in Electrical Engineering, UiTM
Dip. In Electrical Engineering (Power), UiTM
Area of Interest : Power Systems
☎ : erwani@utem.edu.my
☎ : 2243
在职 : A/1-21

JURIFA BINTI MAT LAZI
Senior Lecturer
M.Sc., B.Eng. in Electrical Engineering, UTM
Area of Interest : Power Systems (High Voltage)
☎ : jurifa@utem.edu.my
☎ : 2242
在职 : A/1-20

IR. ROSLI BIN OMAR
Senior Lecturer
M.Sc. in Electrical & Electronics Engineering, USM
B.Eng. in Electrical & Electronics, UTM
Area of Interest : Electrical & Electronics
☎ : rosliomar@utem.edu.my
☎ : 2224
在职 : B/1-1

AMINUDIN BIN AMAN
Lecturer
M.Sc. Electrical Power (HV), UTM
B.Eng. in Electrical Engineering, UTM
Area of Interest : Instrumentation & Control, Power Systems
☎ : aminudin@utem.edu.my
☎ : 2213
在职 : B/1-16

AIDA FAZLIANA BINTI ABDUL KADIR
Senior Lecturer
M.Sc., B.Eng. in Electrical Engineering, UTM
Area of Interest : Power Systems & Flexible Transmission System
☎ : fazliana@utem.edu.my
☎ : 2229
在职 : A/1-2
ALIAS BIN KHAMIS
Lecturer
M.Sc. in Electrical Engineering, UPM
B.Eng. in Electrical Engineering, UiTM
Area of Interest :
✉ : alias@utem.edu.my
📞 : 2272
.Floor : A/G-2

NOR HIDAYAH BINTI RAHIM
Tutor
B.Eng. in Electrical
Area of Interest : Electrical
✉ : hidayah@utem.edu.my
📞 : 2278
.Floor : A/G-17

MOHAMAD FAIZAL BIN BAHAROM
Tutor
B.Eng. of Electrical Engineering (Power Industrial), UTeM
Area of Interest : Power system, Power System Protection and High Voltage
✉ : mohamad.faizal@utem.edu.my
📞 : 2348
.Floor : C/3-9 & 10

MOHAMAD FANI BIN SULAIMA
Tutor
B.Eng. in Electrical & Electronic (Electrical Power System) University of Tokai, Japan
Dip. in Technical Japanese (Electrical & Electronic Engineering), UNISEL
Area of Interest : Power System
✉ : fani@utem.edu.my
📞 : 2348
.Floor : C/3-9 & 10

NUR HAZAHSHA BINTI SHAMSUDIN
Tutor
B.Eng. (Electrical Engineering), UiTM
Diploma in (Electrical Engineering) UiTM
Area of Interest : Communication, Power System, PV and QV Analyses, Fundamental of Balanced Three-Phase Circuits
✉ : nurhazahsha@utem.edu.my
📞 : 2347
.Floor : C/3-11
MUHAMAD KHAIRI B ARIPIN
Head of Department / Lecturer
M.Sc. in Automation & Control, University of Newcastle upon Tyne
B.Eng. (Electrical – Instrumentation & Control), UTM
Dip. in Electrical Engineering (Power), UTM
Area of Interest: Control System Engineering, Instrumentation, Industrial Control & Automation
☎ : khairiaripin@utem.edu.my
fax : 2202
Office : C/1-15

HYREIL ANUAR BIN KASDIRIN
Deputy Dean (Academic) / Lecturer
M.Sc. in Engineering (Control Systems), The University of Sheffield
B.Eng. (Hons) Electrical Engineering (Communication), UiTM
Area of Interest : Control & Communication Engineering
☎ : hyreil@utem.edu.my
fax : 2202
Office : C/1-15

MOHD RUZAINI BIN HASHIM
Lecturer
M.Sc. (Eng.) Electronic and Electrical Engineering, University of Leeds
Bachelor of Engineering (Hons) Electrical, UiTM
Diploma in Electrical Eng. (Electronic), UiTM
Area of Interest : Electronic, Automation
☎ : ruzaini@utem.edu.my
fax : 2281
Office : A/G-17

MOHD FAIRUS BIN ABDOLLAH
Lecturer
M.Eng. (Electrical - Mechatronics & Automatic Control), UTM
B.Eng. (Electrical), UTM
Area of Interest : Control & Intrumentation
☎ : mfairus@utem.edu.my
fax : 2264
Office : B/G-21

DATUK PROF. DR. MOHD RUDDIN BIN AB. GHANI
Professor
Ph.D in System & Control, UMIST, UK
M.Sc. in System Engineering, University of London
B.Eng. in Electrical Engineering
Area of Interest : Control System Engineering
☎ : dpdruddin@utem.edu.my
fax : 2313
Office : A/2-5

AINAIN NUR BINTI HANAFI
Lecturer
M.Sc. in Control System, University of Sheffield
B.Eng. (Electrical Engineering), Universiti Teknologi MARA
Area of Interest : Control System, Microprocessor System Design
☎ : aainain@utem.edu.my
fax : 2208
Office : A/1-4

MAZREE BIN IBRAHIM
Lecturer
M.Sc. Automation and Control, Newcastle University, UK
B.Eng. (Hons) Electrical Engineering (Instrumentation), UiTM
Area of Interest : Control Instrumentation
☎ : mazree@utem.edu.my
fax : 2332
Office : B/3-8

MOHAMAD RIDUWAN BIN MD NAWAWI
Lecturer
M.Sc. in Advanced Control and System Engineering, University of Manchester, UK
B.Eng. (Hons) Electronic Engineering, University of Surrey, UK
Area of Interest : Control System Engineering, Nonlinear System, Process Control
☎ : riduwan@utem.edu.my
fax : 2330
Office : B/3-10
NORAZHAR BIN ABU BAKAR
Lecturer
M.Sc.(Eng.) in Control Systems, University of Sheffield
B.Eng. (Hons) in Electronic and Electrical Engineering, University of Leeds
Diploma in Electrical Eng. (Power), UiTM
Area of Interest: Control Systems, Power Systems
☎: norazhar@utem.edu.my
 ☑: 2279
 ✉: A/G-15

DR. CHONG SHIN HORNG
Senior Lecturer
Doctor of Engineering, Tokyo Institute of Technology, Japan.
M.Eng. in Electrical Engineering, UTM
B.Eng. in Electrical Engineering (Instrumentation & Control)
Area of Interest: Motion Control, Control & Theory Application, Precision Engineering
☎: horng@utem.edu.my
 ☑: 2324
 ✉: A/2-21

NORHASLINDA BINTI HASIM
Lecturer
M.Eng. (Electrical - Mechatronics & Automatic Control), UTM
B.Eng. (Hons) Electrical Engineering (Instrumentation), UiTM
Area of Interest: Control Systems & Instrumentation
☎: norhaslinda@utem.edu.my
 ☑: 2236
 ✉: A/1-10

NUR ASMIZA BINTI SELAMAT
Tutor
Bachelor of Engineering (Electrical), UTM
Area of Interest: Power Electronics, Control, Instrumentation and Automation
☎: nurasmiza@utem.edu.my
 ☑: 2347
 ✉: B/3-8

EZREEN FARINA BINTI SHAIR
Lecturer
M.Eng. (Electrical - Mechatronics and Automatic Control), UTM
B.Eng. (Electrical - Control and Instrumentation), UTM
Area of Interest: Control Instrumentation
☎: ezreen@utem.edu.my
 ☑: 2356
 ✉: B/G-21

ARFAH SYAHIDA BINTI MOHD NOR
Lecturer
M.Eng. (Electrical - Mechatronic and Automatic Control), UTM
B.Eng. (Electrical – Instrumentation and Control), UTM
Area of Interest: Control Instrumentation
☎: arfahsyahida@utem.edu.my
 ☑: 2356
 ✉: B/3-10

LIM WEE TECK
Lecturer
Master of Science in Electrical Engineering, UTeM
B.Eng. in Electrical Engineering (Control, Instrumentation & Automation), UTeM
Area of Interest: Machine Vision, Industrial Automation, Embedded System
☎: limwt@utem.edu.my
 ☑: 2262
 ✉: B/G-19

SAZUAN NAZRAH BINTI MOHD AZAM
Lecturer
Master of Science in Advanced Process Control, Universiti Teknologi Petronas
B.Eng. Electrical Engineering, UTM
Area of Interest: Control System & Instrumentation
☎: sazuan@utem.edu.my
 ☑: 2300
 ✉: B/2-16

HAZRIQ IZZUAN BIN JAAFAR
Tutor
Bachelor of Engineering (Electrical), UTM
Area of Interest: Power Electronics, Control, Instrumentation and Automation
☎: hazriq@utem.edu.my
 ☑: 2348
 ✉: C/3-10-11
MOHD SYAKRANI BIN AKHBAR
Assistant Engineer
☎ : syakrani@utem.edu.my
☎ : 2373

JASMADI BIN ISMAIL
Technician
☎ : jasmadi@utem.edu.my
☎ : 2383

NORLIAH BINTI MAHAT
Technician
☎ : norliahmahat@utem.edu.my
☎ : 2382

MOHD RIDZUAN BIN ROZALI
Technician
☎ : ridzuanrozali@utem.edu.my
☎ : 2377

ASNAN BIN ABAS
Senior Technician
☎ : asnan@utem.edu.my
☎ : -

AZHAN BIN ABDUL RAUB
Technician
☎ : azhan@utem.edu.my
☎ : 2391

FADHIL BIN AHMAD
Technician
☎ : fadhil@utem.edu.my
☎ : 2398

NORLIAH BINTI MAHAT
Technician
☎ : norliahmahat@utem.edu.my
☎ : 2382

MOHD SYAKRANI BIN AKHBAR
Assistant Engineer
☎ : syakrani@utem.edu.my
☎ : 2373

JASMADI BIN ISMAIL
Technician
☎ : jasmadi@utem.edu.my
☎ : 2383

NORLIAH BINTI MAHAT
Technician
☎ : norliahmahat@utem.edu.my
☎ : 2382

MOHD RIDZUAN BIN ROZALI
Technician
☎ : ridzuanrozali@utem.edu.my
☎ : 2377

ASNAN BIN ABAS
Senior Technician
☎ : asnan@utem.edu.my
☎ : -

AZHAN BIN ABDUL RAUB
Technician
☎ : azhan@utem.edu.my
☎ : 2391

FADHIL BIN AHMAD
Technician
☎ : fadhil@utem.edu.my
☎ : 2398
ASSOCIATE PROF. MOHD ARIFF BIN MAT HANAFIAH
Associate Professor
M.Ed. (Technical & Vocational), Universiti Teknologi Malaysia
B.Eng. (Hons) (Electrical & Electronics Engineering), University Of Brighton, U.K.
Professional Baccalaureat Diploma (Automation), AFPM, Lyon, France.
Area of Interest : Industrial Automation, Power Electronics, Motion Control Design & Application, Engineering & Technical Education
✉️: ariff@utem.edu.my
☎️: 2302
様々: B/2-21

AZRITA BINTI ALIAS
Senior Lecturer
M.Eng. (Electrical), UTM
B.Eng. Electrical Engineering (Contol & Instrumentation), UTM
Area of Interest : Control Design & Application, Power Electronics
✉️: 2230
様々: A/1-3

SAHAZATI BINTI MD ROZALI
Lecturer
Master of Electrical Engineering (Mechatronics, Control & Automation), UTM
B.Eng. Electrical & Electronic (Electronic Engineering), USM
Area of Interest : Identification of System, Controller Design & Application
✉️: sahazati@utem.edu.my
☎️: 2312
様々: A/2-4

MOHAMAD AZMI BIN SAID
Senior Lecturer
M.Sc. in Electrical Engineering, Vanderbilt, University Tennessee, USA
B.Eng. in Electrical Engineering (UTM)
☎️: 2322
様々: A/2-19

ALIZA BINTI CHE AMRAN
Lecturer
M. Eng. Electrical & Computer Systems, Monash University, Australia
B.Eng. Electrical Engineer& Electronics, UTP
Area of Interest : Control & Instrumentation
✉️: aliza@utem.edu.my
☎️: 2271
.listFiles[23] = A/G-1

SAIFULZA BIN ALWI @SUHAIMI
Lecturer
M.Eng., Inst. Of Tech. Japan
Area of Interest : Control Systems & Instrumentation
✉️: saifulza@utem.edu.my
☎️: 2204
.listFiles[23] = C/1-3

SALEHA BINTI MOHAMAD SALEH
Lecturer
M.Eng. in Electrical (Mechatronics Automation Control), UTM
B.Eng. Electrical Engineering, UiTM
Area of Interest : Control & Instrumentation
✉️: saleha@utem.edu.my
☎️: 2244
.listFiles[23] = A/1-22

AHMAD FAIRUZ BIN MUHAMMAD AMIN
Lecturer
M.Sc. in Computer Science, UPM
B.Eng. in Computer & Communications, USM
☎️: 2223
.listFiles[23] = B/1-2

SYED NAJIB BIN SYED SALIM
Senior Lecturer
M.Eng. (Electrical Engineering), UTM
B.Eng. in Electrical Engineering (Mechatronic), UTM
Area of Interest : Control, Intrumentation, Automation, Electric Drives, Controller Design & Application
✉️: syednajib@utem.edu.my
☎️: 2303
.listFiles[23] = B/2-22

MOHD SAFIRIN BIN KARIS
Tutor
B. Eng. (Electrical Engineering - Telecommunications), UTM
Area of Interest : Telecommunications, and Control, Instrumentations and Automations
✉️: safirin@utem.edu.my
☎️: 2348
.listFiles[23] = C/3-9 & 10

MASLAN BIN ZAINON
Lecturer
M.Sc. (Electrical Engineering with Power Electronics), University of Bradford, UK
B.Eng. (Hons.) (Electrical and Electronic Engineering), ManchesterMetropolitan University, UK
Dip. (Electro-Mechanical Engineering), Polytechnic of Kota Bharu, MY
Area of Interest : Industrial Automation, Process Control, Instrumentation, Engineering Education
✉️: maslan@utem.edu.my
☎️: 2338
.listFiles[23] = B/3-1

TARMIZI BIN AHMAD IZZUDDIN
Tutor
Bachelor in Science and Engineering (Electronic Control System Engineering), University of Shimane University, Japan
Diploma in Electronic Control System Engineering, Kumamoto National College of Technology, Japan
Area of Interest : PID Controller Design and Tunning Method
✉️: tarmizi@utem.edu.my
☎️: 2348
.listFiles[23] = C/3-9 & 10
FAUZAL NAIM BIN ZOHEDI
Tutor
Bachelor of Electrical Engineering (Electronic), UMP
Area of Interest: Control, Instrument & Automation
☎: fauzal@utem.edu.my
☎: 2348
✉: C/3-9 & 10

AHMAD IDIL BIN ABDUL RAHMAN
Lecturer
M.Eng., B.Eng. Electrical Engineering, UTM
Area of Interest: Digital Signal Processing, Speech Processing
☎: idil@utem.edu.my
☎: 2207
✉: B/1-23
ACADEMIC

KHAIRUL ANWAR BIN IBRAHIM
Head of Department / Senior Lecturer
M.Eng. (Electric Power Engineering), Rensselaer Polytechnic Institute, NY
B.Sc. (Electric Power Engineering), Rensselaer Polytechnic Institute, NY
Area of Interest: Power System, Substation Automation, Protection & Control
☎: khairulanwar@utem.edu.my
☎: 2227/2349
⌂: C/1-18 7 & A/3-6

FAIRUL AZHAR BIN ABDUL SHUKOR
Lecturer
M.Sc. (Electrical Power Engineering), UPM
B.Eng. (Electrical and Electronic Engineering), UPM
Area of Interest: Power Electronics, Electrical Machine Design and Drives
☎: fairul.azhar@utem.edu.my
☎: 2301
⌂: B/2-17

ASSOCIATE PROF. DR. ZULKIFILIE BIN IBRAHIM
Dean / Associate Professor
Ph.D (Power Electronics & Control), Liverpool John Moores University
B.Eng. (Electrical Engineering), UTM
Area of Interest: Power Electronics, Electric Motor Drives, Fuzzy Logic, Embedded Control Design & Application
☎: drzulkifilie@utem.edu.my
☎: 2200
⌂: C/1-14 & A/1-19

NURUL AIN MOHD SAID
Lecturer
M.Sc. in Electrical Power Engineering with Business, University of Strathclyde, UK
B.Eng. (Electrical Engineering), UTM
Area of Interest: Power Electronics, Electric Motor Drives
☎: nurulain@utem.edu.my
☎: 2215
⌂: B/1-10

ASSOCIATE PROF. DR. ISMADI BUGIS
Associate Professor
Ph.D in Power System, University of Strathclyde
M.Sc. in Power Electronics
B.Sc. in Electrical Power Engineering
Universitas Sumatera Utara
Area of Interest: Power System Stability
☎: ismadi@utem.edu.my
☎: 2219
⌂: B/1-5

IR. MD NAZRI BIN OTHMAN
Deputy Dean (Research & post graduate studies) / Lecturer
M.Sc. Electrical Engineering, University of Nottingham, UK
B.Sc. Electrical Engineering, Memphis State University, USA
Area of Interest:
☎: nazri@utem.edu.my
☎: 2232 & 2201
⌂: A/1-5 & C/1-13

MUHAMMAD NIZAM BIN KAMARUDIN
Lecturer
M.Sc. Automation and Control, University of Newcastle Upon Tyne, United Kingdom
B.Eng. (Hons.) Electrical, UiTM
Area of Interest: Optimization and Control
☎: nizamkamarudin@utem.edu.my
☎: 2311
⌂: A/2-3

MOHD SAIFUZAM BIN JAMRI
Lecturer
M.Eng. in Electrical Engineering (Power), UTM
B.Eng. (Hons) in Electrical Engineering, UTeM
Area of Interest: Power Electronics & Drives
☎: saifuzam@utem.edu.my
☎: 2315
⌂: A/2-17
KASRUL BIN ABDUL KARIM
Lecturer
M.Sc. Red Time Power Electronics & Control Systems, University of Bradford, UK
B.Eng. Electrical & Electronics Engineering, UMS
Area of Interest :
☎ : karsul@utem.edu.my
☎ : 2296
✉ : B/2-3

MOHD LUQMAN BIN MOHD JAMIL
Lecturer
M.Sc. Electrical Power Engineering, University of Newcastle, UK
B.Eng. in Electrical Engineering, UiTM
Area of Interest :
☎ : lugman@utem.edu.my
☎ : 2366
✉ : A/3-20

AUZANI BIN JIDIN
Lecturer
M.Sc., B.Eng. in Electrical Engineering, UTM
Area of Interest : Power Electronics & Motor Drives
☎ : auzani@utem.edu.my
☎ : 2354
✉ : A/3-3

NORHAZILINA BINTI BAHARI
Lecturer
M.Eng. in Electrical Engineering (Power), UTM
B.Eng. (Hons) in Electrical Engineering, UTeM
Dip. In Electrical Engineering (Communication), UTM
Area of Interest : Renewable Energy, Power Electronics & Motor Drives
☎ : hazilina@utem.edu.my
☎ : 2277
✉ : A/G-9

ABDUL RAHIM BIN ABDULLAH
Lecturer
M.Sc., B.Eng. in Electrical Engineering, UTM
Area of Interest : Power Electronics & Drives, Signal Processing
☎ : abdulr@utem.edu.my
☎ : 2353
✉ : A/3-2

ATIKAH BTE RAZI
Tutor
Bachelor of Engineering (Electrical), UT
Area of Interest :
☎ : atikah@utem.edu.my
☎ : 2347
✉ : A/G-9
SUBKI BIN MAT KAHAR
Assistant Engineer
☎: subki@utem.edu.my
☎: 2393

KHAIRULDDIN BIN HASHIM
Technician
☎: khairuddin@utem.edu.my
☎: 2374

NAZRI BIN OSMAN
Technician
☎: mnazri.osman@utem.edu.my
☎: 2368

MOHAMAD ALI MUSA BIN SARIF
Technician
☎: ali@utem.edu.my
☎: 2288

MOHAMED KHAIRY BIN ALI
Technician
☎: khairyali@utem.edu.my
☎: 2288

NORFAZLIZAH BT MAT SAPAR
Technician
☎: norfazlizah@utem.edu.my
☎: 2381

SITI FATIMAH BT KAMARUDIN
Technician
☎: sitifatimah@utem.edu.my
☎: 2380

MOHD HELMAN BIN ABD. RAHMAN
Technician
☎: helman@utem.edu.my
☎: 2368

LUQMAN AL-HAKIM BIN SELAMAT
Technician
☎: alhakim@utem.edu.my
☎: 2396
SYAHAR AZALIA BINTI AB. SHUKOR
Tutor
B.Eng. of Electrical Engineering (Power Electronics & Drives), UTeM
Dip. in Electrical Engineering, UTeM
Area of Interest: Power Electronics, Electric Motor Drives, Embedded Control Design & Application

AZZIDDIN BIN MOHAMAD RAZALI
Lecturer
M.Eng., B.Eng. in Electrical Engineering, UTM
Area of Interest: Power Electronics

FAZLLI BIN PATKAR
Lecturer
M.Eng., B.Eng. in Electrical Engineering, UTM
Area of Interest: Power Electronics & Electric Motor Drives

IMRAN SUTAN BIN CHAIRUL
Tutor
B.Eng. (Hons) in Electrical Engineering (Industrial Power), UTeM

MUSA BIN YUSUP LADA
Tutor
B.Eng. (Hons) in Electrical Engineering (Power Electronic & Drives), UTeM

MOHD ZULKIFLI BIN RAMLI
Lecturer
M.Eng. in Electrical Engineering, UTM
B.Eng. in Electrical Engineering (Mechatronic), UTM

WAHIDAH BINTI ABD. HALIM
Lecturer
M.Sc. Electrical Engineering, UPM
B.Eng. Electrical Engineering, UTM
Area of Interest: Power Electronics & Flexible Transmission System

MUSAPALIZA BINTI AZRI
Lecturer
M.Eng. (Power), UPM
B.Eng. (Electrical Engineering), UTM
Area of Interest: Renewable Energy, Power Electronics

ZAIHASRAF BIN ZAKARIA
Lecturer
M.Eng. (Electrical Engineering), UTM
B.Eng. (Electrical Engineering), UTM
Area of Interest: Fuzzy Logic, SCADA System, Intelligent Control

SHARIN BIN AB. GHANI
Tutor
B.Eng. (Hons) in Electrical Engineering, UTeM

MD HAIRUL NIZAM BIN TALIB
Head of Department / Senior Lecturer
M.Sc. Electrical Engineering, University of Nottingham, UK
B.Eng. Electrical Engineering, UTM
Area of Interest: Power System & Control

ZULHANI BIN RASIN
Lecturer
M.Eng. in Electrical (Electronics & Communications), UTM
B.Eng. (Electrical Engineering), University of Electro-Communication, Tokyo
Area of Interest: Wireless Sensor Network, Power Electronics

SITI AZURA BINTI AHMAD TARUSAN
Tutor
B.Eng. (Electrical Engineering), UTM
Area of Interest: Power Electronics, Control and Instrumentation

AHMAD AIZAN BIN ZULKEFLE
Lecturer
M.Eng. (Electrical Engineering & Power Electronics), University of Bradford, UK
B.Eng. (Electrical Engineering), UTM
Diploma (Electrical Power), UTM
Area of Interest: Control Systems, Renewable Energy & Motion Control.
DR. MUHAMMAD FAHMI BIN MISKON
Head of Department / Senior Lecturer
PhD (Robotics), Monash, Univ., Australia
MSc in Mechatronics, Univ. of Newcastle Upon Tyne, UK
B.Eng in Electrical – Mechatronics, UTM, Malaysia
Area of Interest: Robotics and Automation, Novelty detection, embedded system design and development
☎: fahmimiskon@utem.edu.my
☎: 2205 / 2304
⇨: C/1-4 & B/2-23

DR. TAY CHOO CHUAN
Senior Lecturer
Ph.D Pure Mathematics (Group Theory), UKM
M.Sc (Mathematics), UKM
B.Sc (Hons) Mathematics, UKM
Area of Interest: Mathematics, Quality & Productivity Improvement
☎: tay@utem.edu.my
☎: 2342
⇨: B/3-18

ANUAR BIN MOHAMED KASSIM
Lecturer
M.Eng in System Innovation Engineering (Electrical & Electronic Engineering), University of Tokushima, Japan
B.Eng. in Electrical Electronic Engineering, Ehime University Japan
Area of Interest: Control Systems, Robotics, Automation & Mechatronics.
☎: anuar@utem.edu.my
☎: 2317
⇨: A/2-15

DR. HAMZAH BIN SAKIDIN
Senior Lecturer
Ph.D (Applied Mathematics), UPM
M.Sc. (Applied Mathematics), UKM
B. Sc.[Hons] (Chemistry), UKM
Diploma of Education (Chemistry), UKM
Area of Interest: Applied mathematics, Mathematical modeling
☎: hamzaheakidin@utem.edu.my
☎: 2343
⇨: B/3-19

SHAHRUDIN BIN ZAKARIA
Lecturer
M.Eng in Electrical Engineering, UTM
B.Eng. in Electrical Engineering (Mechatronics), UTM
Area of Interest: Electrical Power Mechatronics
☎: shahrudin@utem.edu.my
☎: 2297
⇨: B/2-2

IRMA WANI BINTI JAMALUDIN
Lecturer
Master of Science (Mathematics), UTM
Bachelor of Science (Hons) Industrial Mathematics, UTM
Area of Interest: Algebra and Analysis, Applied Mathematics
☎: irma@utem.edu.my
☎: 2275
⇨: A/G-5
NIK SYAHRIIM BIN NIK ANWAR
Lecturer
M.Sc. in Mechatronics, University of Applied Science Aachen, Germany
B.Eng. (Hons) in Mechatronics (FH HN)
Area of Interest: Precision Engineering, Sensors & Inertial Navigation.
☎ : syahrim@utem.edu.my
📞 : 2361
✉ : A/3-15

MOSES ALFIAN SIMANJUNTAK
Lecturer
Master degree in Statistics, IPB-Bogor Institute of Agriculture
Bachelor degree in Mathematics-Statistics, ITB-Bandung Institute of Technology
Area of Interest: Time Series, Multivariate Statistics, Stochastic-Queues & Networks, Design of Experiments, Optimization, Generalized Linear Models and Statistical Quality Control
☎ : mosesalfians@utem.edu.my
📞 : 2238
✉ : A/1-16

HAIROL NIZAM BIN MOHD SHAH
Lecturer
M.Sc. in Electrical Engineering (Mechatronics), UTeM
B.Eng. in Electric-Electronic Engineering, UMS
Area of Interest: Vision System, Image Processing, Robotics
☎ : hnzam@utem.edu.my
📞 : 2282
✉ : A/G-19

MUHAMMAD HERMAN BIN JAMALUDDIN
Lecturer
M.Sc. in Electrical Engineering (Mechatronic System), UTeM
B.Eng. in Electrical Engineering (Mechatronics), UTM
☎ : herman@utem.edu.my
📞 : 2216
✉ : B/1-9

ZAMANI MD SANI
Lecturer
M.Sc. Electrical & Electronics Engineering (Real-Time Vision System), USM
B.Eng. (Electrical & Electronics Engineering), USM
Area of Interest: Embedded System Design & Application
☎ : zamanisani@utem.edu.my
📞 : 2362
✉ : A/3-16

NUR ILYANA BINTI ANWAR APANDI
Lecturer
Master Degree (Statistics), UKM
Bachelor Degree (Statistics), UKM
Area of Interest: Applied Mathematics, Mathematical Modelling
☎ : ilyan@utem.edu.my
📞 : 2258
✉ : B/G-1

ARFAH BINTI AHMAD
Lecturer
Master Degree (Statistics), UKM
Bachelor Degree (Statistics), UKM
Area of Interest: Statistical Analysis, Modelling, Survey & Sampling, Mathematics
☎ : arfa@utem.edu.my
📞 : 2213
✉ : B/1-16

SYED MOHAMAD SHAZALI BIN SYED ABDUL HAMID
Lecturer
M.Sc. (Electrical Engineering), UTeM
B.Eng. (Electrical Engineering), UTHM
Area of Interest: Machine Vision, Digital Electronic, Mechanical Design
☎ : syedmohamad@utem.edu.my
📞 : 2259
✉ : A/3-9
FADILAH BINTI ABDUL AZIS
Lecturer
B.Eng. in Mechatronics Engineering, UIAM
Area of Interest: Robotics & Mechanical Structure
☎ : fadilah@utem.edu.my
☎ : 2319
✉ : A/2-9

MOHD RUSDY BIN YAACOB
Lecturer
M.Sc. in Mechatronics, University of Siegen
B.Eng. in Mechatronic Engineering
Universiti Islam Antarabangsa Malaysia
Area of Interest: Sensors, Mechatronics & Mechanical Systems.
☎ : rusdy@utem.edu.my
☎ : 2363
✉ : A/3-17

NURDIANA BINTI NORDIN @ MUSA
Lecturer
B.Eng. in Mechatronic Engineering
Universiti Islam Antarabangsa Malaysia
Area of Interest: Mechatronics, Machine Vision & Mobile Robotics
☎ : nurdiana@utem.edu.my
☎ : 2316
✉ : A/2-16

FARA ASHIKIN BINTI ALI
Lecturer
M.Eng. Electrical and Computer Engineering, Kanazawa University, Japan
B.Sc. Physics, Kanazawa University, Japan
B.Sc. Physics, Kanazawa University
Area of Interest: Sensor, Electronic Material, Semiconductor, Oxide electronics, Underwater research
☎ : fara@utem.edu.my
☎ : 2230
✉ : A/2-8

LOI WEI SEN
Lecturer
M. Sc Engineering Mathematics (UTM)
B. Sc. Mathematics (UTM)
Area of Interest: Nonlinear wave & Solitons, Optical Solitons, Applied Mathematics
☎ : loiws@utem.edu.my
☎ : 2262
✉ : B/G-19
MOHD ARIF BIN MOHD NOR
Assistant Engineer
Email: arif@utem.edu.my
Ph: 2389

OMAR BIN MAT IBRAHIM
Chief Senior Technician
Email: omar@utem.edu.my
Ph: 2372

AZIZUL ARIFIN BIN ISA
Technician
Email: azizularifin@utem.edu.my
Ph: 2287

NURDIANA BINTI RASIB
Technician
Email: nurdianarasib@utem.edu.my
Ph: 2369

AZLIANI BINTI MD NGARI
Technician
Email: azliani@utem.edu.my
Ph: 2286

KHAIRUL AZUWAN BIN AB. KARIM
Technician
Email: khairul.azuwan@utem.edu.my
Ph: 2398

ABD RAHIM BIN BABA
Technician
Email: abdraham@utem.edu.my
Ph: 2392
MARIAM BINTI MD. GHAZALY
Lecturer
M.Eng. in Mechatronic & Automatic Control Engineering, UTM
B.Eng. in Electrical Engineering, UTM
☎ : mariam@utem.edu.my
_neurons : 2273
☎ : A/G-3

NORAFIZAH BINTI ABAS
Tutor
B.Eng. (Hons) in Electrical (Mechatronics), UIAM
☎ : norafizahbas@utem.edu.my
_neurons : 2341
☎ : B/3-17

NURUL FAITHI BINTI JOHAN
Tutor
B.Eng. (Mechatronic Engineering), UTeM
☎ : nffatiha@utem.edu.my
_neurons : 2347
☎ : C/1-11

RAHIFA BINTI RANOM
Lecturer
M.Sc. (Mathematics), UTM
B.Sc. (Industrial Mathematics), UTM
Area of Interest : Applied Mathematics, Numerical Analysis
☎ : rahifa@utem.edu.my
_neurons : 2274
☎ : A/G-4

AHMAD ZAKI BIN HJ. SHUKOR
Lecturer
M.Eng. (Electrical Power Engineering)
University of South Australia, Adelaide
B.Eng. (Electrical-Mechatronics Engineering), UTM
Area of Interest : Embedded Control Design & Application, Mobile Robots
☎ : zaki@utem.edu.my
_neurons : 2305
☎ : B/2-24

MOHD ZAMZURI BIN AB. RASHID
Tutor
B.Eng. (Hons) in Mechatronics Engineering, UIAM
☎ : zamzuri@utem.edu.my
_neurons : 2276
☎ : A/G-8

MOHD SHAHRIEEL BIN MOHD ARAS
Lecturer
M.Eng. Electrical Engineering (Mechatronic and Automatic Control), UTM
Bachelor of Electrical Engineering (Hons), UiTM
Diploma in Electrical Engineering (Electronics), UiTM
Area of Interest : Communication, Fuzzy logic, Neural Network, control and Underwater research
☎ : shahrieel@utem.edu.my
_neurons : 2284
☎ : A/G-21

NUR MAISARAH BINTI MOHD SOBRAN
Tutor
B.Eng. (Hons) Electrical (Electrical-Mechatronic) UTM
Area of Interest : Robotics, Artificial Intelligence, Data Communication and Network
☎ : nurmaisarah@utem.edu.my
_neurons : 2351
_neurons : C/3 - 3
AHMAD ZUBIR BIN JAMIL
Head of Department / Lecturer
M.Sc. (Automatic Control and System Engineering), University of Sheffield, UK
P.Grad Diploma (Industrial Education and Training) RMIT, Melbourne
B.Eng. (Hons) Electrical & Electronic, University of Strathclyde, UK
Area of Interest : Industrial Automation, Industrial Education and Training (VTET) Computer Maintenance Management System
Email : zubir@utem.edu.my
Office : 2237
Office : A/1-15 &

MOHD FARRIZ BIN HJ MD BASAR
Lecturer
M.Eng. Electrical Engineering (High Voltage), UTM
B.Eng. Electrical Engineering, UTM
Area of Interest : High Voltage Testing, Renewable Energy Technologies and Application
Email : mfarriz@utem.edu.my
Office : 2217
Office : B/1-8

ASRI BIN DIN
Lecturer
M.Eng. (Electrical Energy & Power System) Universiti Malaya
B.Eng. (Electrical Engineering), UTM
Email : asridin@utem.edu.my
Office : 2212
Office : B/1-17

AMINURRASHID BIN NOORDIN
Lecturer
M.Eng. (Electrical - Mechatronics and Automatic Control), UTM
B.Eng. (Electrical - Mechatronics), UTM
Area of Interest : Robotics, Automatic Control, Artificial Intelligence
Email : aminurrashid@utem.edu.my
Office : 2235
Office : A/1-9

MUSTAFA BIN MANAP
Teaching Engineer
B.Eng. in Electrical Engineering (Control and Instrumentation), UTM
Diploma in Electrical Power Engineering, UTM
Area of Interest : Instrumentation, PLC, SCADA
Email : mustafa@utem.edu.my
Office : 2290
Office : B/1-10

MOHD RAZALI BIN MOHAMAD SAPIEE
Lecturer
M.Eng. (Electrical - Mechatronics and Automatic control), UTM
B.Eng (Hons.) Mechatronics, University of Leeds
Area of Interest : Mechatronics, Adaptive Control
Email : mohd.razali@utem.edu.my
Office : 2299
Office : B/2-15

MOHD HANIF BIN CHE HASAN
Teaching Engineer
B.Eng. (Mechatronics), UTM
Area of Interest : VB Programming, Embedded System, PC & PLC Based Automation, SCADA, System Integration, Design & Application
Email : hanif.hasan@utem.edu.my
Office : 2259
Office : B/G-15

SULAIMAN BIN SABIKAN
Lecturer
M.Sc Electrical Engineering, Universiti Teknikal Malaysia Melaka
B.Eng in Electrical Engineering (Mechatronics)
Universiti Teknologi Malaysia
Email : sulaiman@utem.edu.my
Office : 2239
Office : A/1-17
MOHD YUNOS BIN ALI
Senior Teaching Engineer
B.Eng Electrical Electrical Engineering (Power System)
Universiti Teknologi Malaysia
Area of Interest: Power Electronics, Electric Motor & Drives.
☎: yunos@utem.edu.my
☎: 2334
☎: B/3-5

SYAHRUL HISHAM BIN MOHAMAD @ ABD. RAHMAN
Teaching Engineer
B.Eng. Electrical and Electronic (Hons), Uniten
Area of Interest: Power Electronic and Drives, Electrical and Electronic System, Embedded, System, PC & PLC Based Automation, SCADA
☎: syahrulhisham@utem.edu.my
☎: 2252
☎: B/G-09

MUHAMMAD SHARIL BIN YAHAYA
Lecturer
M.Sc. Power Distribution Engineering, Newcastle University, UK
B.Eng. (Hons) Electrical Engineering, UTM
Area of Interest: Power Distribution System, High Voltage Testing & Renewable Energy Technology
☎: sharil@utem.edu.my
☎: 2292
☎: B/2-8

MADIHA BTE ZAHARI
Teaching Engineer
B. Eng. (Hons) Electrical & Electronics, UTP
Area of Interest: Control & Instrumentation
☎: madiha@utem.edu.my
☎: 2336
☎: B/3-3

MUHAMAD FAIZAL BIN YAAKUB
Teaching Engineer
B.Eng. (Electrical-Electronic), UTM
Area of Interest: Electronics, Automotive Electronics, Power Electronic
☎: muhamadfaizal@utem.edu.my
☎: 2334
☎: B/3-5

SUZIANA BINTI AHMAD
Teaching Engineer
B.Eng. (Electrical Engineering (Telecommunication), UTM
Area of Interest: Power System, Energy Management, Power Electronics
☎: suziana@utem.edu.my
☎: 2336
☎: B/3-3

MOHD HATTA BIN JOPRI
Senior Teaching Engineer
B.Eng in Electrical Engineering Universiti Teknologi Malaysia (UTM)
Area of Interest: Power Systems
☎: hatta@utem.edu.my
☎: 2214
☎: B/1-15

ZULKIFLI BIN IBRAHIM
Teaching Engineer
B.Eng Electrical Power Engineering, UNITEN
Area of Interest: High Voltage and Power System
☎: zulkifilibrahim@utem.edu.my
☎: 2360
☎: A/3-9

KHALIL AZHA BIN MOHD ANNUAR
Teaching Engineer
B.Eng. In Electrical (Electronic) Engineering UTM
Area of Interest: Electronics, Embedded Control Design & Application
☎: khalilazha@utem.edu.my
☎: 2335
☎: B/3-4

MUHAMMAD FIRDAUS BIN MOHD AB HALIM
Teaching Engineer
B.Eng. (Electrical Engineering), Uniten
Area of Interest: Power Electronics, Electric Motor & Drives, Reliability of Power Electronics
☎: firdaus@utem.edu.my
☎: 2335
☎: B/3-4

ZULKIFLI BIN IBRAHIM
Teaching Engineer
B.Eng Electrical Power Engineering, UNITEN
Area of Interest: High Voltage and Power System
☎: zulkifilibrahim@utem.edu.my
☎: 2360
☎: A/3-9
FACILITIES & INFRASTRUCTURE

FKE’S BUILDING MAP

BLOCK A

- Ground Floor: Lecturers’ rooms, Lecture Room 2
- 1st Floor: Ladies prayer room, Lecturer rooms, Seminar room
- 2nd & 3rd Floor: Lecturer rooms

BLOCK B

- Ground Floor: Lecturers’ rooms, Lecture Room 1
- 1st Floor: Lecturers’ rooms, Discussion Room 1 & 2
- 2nd Floor: Lecturers’ rooms, Discussion room 4 & 5
- 3rd Floor: Lecturers’ rooms

BLOCK C

- Ground Floor: Faculty lobby, Lecturers’ rooms
- 1st Floor: Faculty administration office, Dean, Deputy Dean/Head of Department
- 2nd Floor: FKE meeting room, ISO files room, waiting room.
- 3rd Floor: Lecturers’ rooms.

BLOCK D

- Ground Floor: Power electronic and drive lab.
- 1st Floor: Robotic and industry automation research lab, Mechatronic and CIA lab.
- 2nd Floor: Electrical Technology lab 1, Post graduate room 1

BLOCK E

- Ground Floor: Power systems Labs 1 & 2, Pneumatic and hydraulic Lab, Power electronic lab, Lecture Rooms 3 & 8, Students prayer room (male)
- 1st Floor: Power electronic and drive lab research room, Post graduate room 2, Final year project room, Lecture Rooms 4,9 & 10, Students prayer room (female), CIA simulation lab, Energy Efficiency lab.
- 2nd Floor: Power electronic applications lab, Power electronic simulation lab, Lecture rooms 5 ,10 & 12 Mechatronic system lab, Control system lab.
- 3rd Floor: Energy and power system lab, Lecture Rooms 6 ,13 & 14, Briefing room 7 , PLC & Process control lab, Robotic and automation lab.

BLOCK F

- Ground Floor: Power industry workshop, Engineering practices workshop, Electrical machine labs 1 & 2, High voltage lab, Generation and transmission lab, Protection system lab, Machine drive lab.
- 2nd Floor: Electrical & Electronic Labs 1 & 2, Lecture Room 15 & 16
- 3rd Floor: Microprocessor Lab, Instrumentation and DSP Lab, Sensor and Transducer Lab.
<table>
<thead>
<tr>
<th>No</th>
<th>Laboratory / Workshop</th>
<th>Room No.</th>
<th>Equipments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Power system lab 1</td>
<td>E/G-2</td>
<td>TERCO Transmission System Training Set, TERCO Power Utilization System Training Set</td>
</tr>
<tr>
<td>2</td>
<td>Power system lab 2</td>
<td>E/G-7</td>
<td>TERCO Generation System Training Set</td>
</tr>
<tr>
<td>3</td>
<td>Energy Efficiency lab</td>
<td>E/1-19</td>
<td>Various tools & equipment of energy efficiency studies</td>
</tr>
<tr>
<td>4</td>
<td>Protection system lab</td>
<td>F/G-27</td>
<td>LABVOLT Protection System Training Set, PC</td>
</tr>
<tr>
<td>5</td>
<td>Electrical & Electronic Lab 1</td>
<td>F/2–4</td>
<td>PCs, Function Generators, Oscilloscopes, Digital Lab Trainers, Multimeters</td>
</tr>
<tr>
<td>6</td>
<td>Electrical & Electronic Lab 2</td>
<td>F/2–15</td>
<td>PCs, Function Generators, Oscilloscopes, Digital Lab Trainers, Multimeters</td>
</tr>
<tr>
<td>7</td>
<td>Electrical Technology lab 1</td>
<td>D/2–11</td>
<td>LABVOLT meters, loads, tools & equipments for electrical technology studies</td>
</tr>
<tr>
<td>8</td>
<td>Generation and Transmission lab</td>
<td>F/G–22</td>
<td>Vacant</td>
</tr>
<tr>
<td>9</td>
<td>High voltage lab</td>
<td>F/G-18</td>
<td>HAEBFLY high voltage engineering modular training set</td>
</tr>
<tr>
<td>10</td>
<td>Sensor and Transducer Lab.</td>
<td>E/2–16</td>
<td>PC (pesim), Transducers & instrumentation training set, WOOSON sensor application training set</td>
</tr>
<tr>
<td>11</td>
<td>CIA simulation lab</td>
<td>E/1–14</td>
<td>PC c/w Matlab & Multisim, Micro-Box</td>
</tr>
<tr>
<td>12</td>
<td>PLC & Process control lab</td>
<td>E/3–13</td>
<td>OMRON PLC Training Set, Test Panel DOL Motor Starter, Test Panel STAR-DELTA Motor Starter and various equipments of automation</td>
</tr>
<tr>
<td>No</td>
<td>Laboratory / Workshop</td>
<td>Room No.</td>
<td>Equipments</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>Microprocessor Lab</td>
<td>F/3–8</td>
<td>PCs, Oscilloscopes, Multimeter, Mechatronics project kit, PIC Training Kit</td>
</tr>
<tr>
<td>14</td>
<td>Instrumentation and DSP Lab</td>
<td>F/3–5</td>
<td>LORENZO CBT Modul, Multimeters, function generators, digital lab trainer, analog oscilloscope, magnaprobe, Galvanometer, Decade resistor, Decade Inductor</td>
</tr>
<tr>
<td>15</td>
<td>Control System Lab</td>
<td>E/2-21</td>
<td>Modular Servo System, Mathlab software, Digital Oscilloscope.</td>
</tr>
<tr>
<td>16</td>
<td>Robotic and automation lab</td>
<td>E/ 3-18</td>
<td>Rhino robot trainer, Scara robot trainer, etc,</td>
</tr>
<tr>
<td>17</td>
<td>Pneumatic and hydraulic Lab</td>
<td>E/G-15</td>
<td>BOSCH REXROTH Pneumatic & Hydraulic System Training Set</td>
</tr>
<tr>
<td>18</td>
<td>Power Electronic Lab</td>
<td>E/G–20</td>
<td>PCs, oscilloscope digital Tektronix and various equipments for power electronics studies, Power Electronics training system model labvolt</td>
</tr>
<tr>
<td>19</td>
<td>Power Electronic Simulation Lab</td>
<td>E/2–7</td>
<td>PCs & LabView software</td>
</tr>
<tr>
<td>20</td>
<td>Power electronic applications lab</td>
<td>E/2–2</td>
<td>PCs, ERACS & PSCAD software</td>
</tr>
<tr>
<td>21</td>
<td>Electrical machine lab 1</td>
<td>F/G–14</td>
<td>LORENZO electrical machines</td>
</tr>
<tr>
<td>22</td>
<td>Electrical machine lab 2</td>
<td>F/G-11</td>
<td>Dissectible machine</td>
</tr>
<tr>
<td>23</td>
<td>Machine drive lab</td>
<td>F/G-30</td>
<td>Terco scan drive</td>
</tr>
<tr>
<td>24</td>
<td>Power Electronic workshop</td>
<td>F/G–4</td>
<td>Wiring bays, tools and equipments for domestic & motor control/starter wiring</td>
</tr>
<tr>
<td>25</td>
<td>Mechatronic and CIA workshop</td>
<td>D/1-10B</td>
<td>CIM System, AGV, CNC machine, OMRON machine vision, robot arm training set</td>
</tr>
</tbody>
</table>

Engineering Practices Workshop

Power electronic and drive research lab
<table>
<thead>
<tr>
<th>No</th>
<th>Laboratory / Workshop</th>
<th>Room No.</th>
<th>Equipments</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Engineering Practices Workshop</td>
<td>F/G-6</td>
<td>Hitachi bench drill, welding set, grander, break cutter, pallet jack, spanner Canady</td>
</tr>
<tr>
<td>27</td>
<td>Power electronic and drive workshop</td>
<td>D/G-11</td>
<td>Vacant</td>
</tr>
<tr>
<td>28</td>
<td>Mechatronic system lab</td>
<td>F/3-2</td>
<td>PCB machine</td>
</tr>
<tr>
<td>29</td>
<td>Robotic and industry automation research lab</td>
<td>D/1–10A</td>
<td>CIM System, AGV, CNC machine, OMRON machine vision, robot arm training set</td>
</tr>
<tr>
<td>30</td>
<td>Power electronic and drive research lab</td>
<td>E/1-3</td>
<td>Oscilloscope, dc power supply, power analyzer, ac power source, current probe, solar panel & solar generator, wind turbine, load bank, spectrum analyzer, function generator, programmable ac-dc electronic load, ac-dc current measurement, high voltage differential probe</td>
</tr>
<tr>
<td>31</td>
<td>Energy and power system lab</td>
<td>E/3-2</td>
<td>Fluke Multimeter, oscilloscope, pc</td>
</tr>
<tr>
<td>32</td>
<td>Post graduate room 1</td>
<td>D/2-10</td>
<td>TV, CCTV Camera, Digital multimeter, recorder (Cynics 9), Programmable 3 phase AC power source, Research tools and accessories.</td>
</tr>
<tr>
<td>33</td>
<td>Post graduate room 2</td>
<td>E/1-4</td>
<td>DSPACE/DS1103, Digital Oscilloscope 4 channel, DC power supply. Professional Service Engineering tool kit, Digital multimeter, Research tools and accessories.</td>
</tr>
<tr>
<td>34</td>
<td>Final Year Degree & Diploma Project Lab</td>
<td>E/1-5</td>
<td>Final year project collections</td>
</tr>
</tbody>
</table>
The faculty would like to extend our gratitude and appreciation to all who have contributed to the success of Academic Handbook completion:

Associate Professor Dr. Zulkifilie bin Ibrahim
Hyreil Anuar bin Kasdirin
Azhar bin Ahmad
Muhamad Khairi bin Aripin
Khairul Anwar bin Ibrahim
Dr. Muhammad Fahmi bin Miskon
Ahmad Zubir bin Jamil
Nur Ilyana binti Anwar Apandi
Kyairul Azmi bin Baharin
Mohamad Riduwan bin Md Nawawi
Aimie Nazmin bin Azmi
Nurul Ain binti Mohd Said
Fadilah binti Abdul Azis
Mohd Hanif bin Che Hasan
Siti Aisyah bin Mat Zain
Mohd Fauzi bin Roslan
Siti Fatimah binti Kamaruddin

And all of the parties involved.