Catalytic reduction of N₂O with CH₄ over various Cu-SBA-15 catalysts M.H.M. Husin^{1,2,*}, M.R. Nordin³, I.S. Mohamad¹, S.Y. Chin⁴ ¹⁾ Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia. ²⁾ Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia. ³⁾ Faculty of Technology Management & Technopreneurship, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia. ⁴⁾ Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Kuantan, 26300, Malaysia. *Corresponding e-mail: haizal@utem.edu.my Keywords: N₂O reduction; Cu-SBA-15 catalysts; N₂O:CH₄ ratio **ABSTRACT** – The N_2O catalytic reduction by methane over Cu-SBA-15 molar ratio (1:30) was studied based on physical mixture, impregnation method and pH adjustment method preparation. All catalytic reduction of N2O with methane were carried out in a flow reactor system at atmospheric pressure with 100 mL/min total flow was used. For the N_2O :CH₄ ratio effect, suggested that N_2O reacts with CH₄ is represented by $4N_2O + CH_4$ → $4N_2 + CO_2 + 2H_2O$. The Cu/SBA-15 prepared by pH adjustment method has highest activity compared to Cu-SBA-15 prepared by impregnation method and physical mixture of CuO and SBA-15. ### 1. INTRODUCTION Due to the increasing concern over environmental issues, studies on N2O have oriented towards the development of catalytic systems for its elimination. Various types of catalysts have been reported to be active for the decomposition of nitrous oxide. Cu-SBA-15 is one of those materials showing better prospects for application as catalyst for N2O decomposition [1-2]. Catalytic reduction is an alternative to catalytic decomposition with the potential to lower the temperature for effective N2O removal by addition of a reducing agent. Therefore, the use of hydrocarbons as reducing agent is widely and easily available, such as CH₄, C₃H₆ or C₃H₈ required to meet commercial feasibility [3]. Previous report, the Cu/SBA-15 samples prepared by pH adjustment method shows higher activity on N₂O decomposition due to copper atom was substituted in the framework of the SBA-15 with better dispersion of copper species on mesoporous silica and easily reduced copper-silica support interaction CuO to Cu due to the weakening of copper - silica support interaction [2,4]. Known that, CH₄ is strong greenhouseeffect gases with a global warming potential (GWP) per molecule of about 20 times that of carbon dioxide. Therefore, it is interesting studies that a selective catalytic reduction (SCR) of N2O by CH4 is applied to simultaneous removal of N2O and CH4 in the emission gases by various Cu-SBA-15. ## 2. METHODOLOGY ### 2.1 Cu on SBA-15 preparation For Cu on SBA-15 molar ratio (1:30) by the pH adjustment and impregnation samples was prepared based on previous report [2]. Meanwhile, physical mixture of copper oxide in SBA-15 samples was prepared by the required amount of powder form copper oxide was mixed together in one (1) gram of prepared SBA-15 to obtain Si:M molar ratios of 30:1. ### 2.2 N₂O decomposition and reduction with CH₄ The catalytic experiments were carried out in an alumina tube (4.76 mm i.d.) micro-reactor. Amount of 500.0 mg sample was filled into the tube to form a catalyst bed. The reaction temperature was monitored by a K-type thermocouple inserted inside the catalyst bed. The reaction unit was equipped with mass flow controllers and product analysis was performed with online gas chromatograph 7680A (Agilent) equipped with two columns in series (molecular sieve 5A and Heyasep Q) and TCD detector. For N₂O decomposition, the reaction gas composed of 1.0% N₂O in He at a total flow rate of 100 mL/min. Meanwhile for N₂O reduction with CH₄, reaction gas mixture was composed of 1.0 % N₂O and 0.1%, 0.25% and 1% CH₄ in He at a total flow rate of 100 mL/min, respectively to N₂O:CH₄ ratio of 10:1, 4:1 and 1:1. #### 3. RESULTS AND DISCUSSION ### 3.1 Effect of different N2O:CH4 ratio The effect of catalytic activity in the differences N₂O:CH₄ volume ratio on N₂O reduction reaction on Cu/SBA-15 (1:30) prepared by pH adjustment sample have been done. Figure 1 shows catalytic activity of N_2O reduction by CH₄ at different N₂O:CH₄ ratio compared to N₂O decomposition in the absence of CH₄. The catalytic activity of N₂O decomposition on Cu/SBA-15 catalyst was significantly promoted by the presence of CH₄. The conversions of CH₄ in different N₂O:CH₄ volume ratio reactions were compared in Figure 2, CH₄ conversion increased with the reaction temperature and with N₂O:CH₄ ratio. Meanwhile, Figure 3 shows the plotting graph N2 and O2 formation verses N2O conversion at different $N_2O:CH_4$ ratio. The slope of the N_2O decomposition to CH₄ conversion is 4.0, 1.0 and 0.33, for N₂O:CH₄ ratio of 1:1, 4:1 and 10:1 respectively. Based on relationship of volume and mole of gases in Avogadgo Law, suggested that N₂O reacts with CH₄ is represented by $4N_2O + CH_4 \rightarrow 4N_2 + CO_2 + 2H_2O$. Simultaneous presence of N₂O with CH₄ is essential for the high selective catalytic reduction (SCR) activity of N_2O with CH₄. This is related to the high initial rate of CH₄ in N_2O + CH₄ reaction on Cu/SBA-15. The CH₄ plays an important role in the N_2O reduction, because the catalytic activities in N_2O conversion were drastically enhanced by the presence of CH₄. According to Nobukawa and Sugawara, nascent oxygen transients (O*) from N_2O dissociation before accommodation on stable adsorption sites can play an important role in activation and oxidation of CH₄. Thus, it seems that methane effectively reduced oxidized active sites (O*) and therefore increased the rate of the N_2O conversion [5]. Figure 1 The catalytic activity of N₂O reduction by CH₄ on Cu/SBA-15 at different N₂O:CH₄ ratio. Figure 2 CH₄ conversion against Reaction temperature on different N₂O:CH₄ ratio. Figure 3 Plotting N₂O conversion verses CH₄ conversion on different N₂O:CH₄ ratio. ### 3.2. Catalytic activity of N2O conversion Figure 4 present N₂O decomposition on various copper on SBA-15. Cu/SBA-15 prepared through pH modification sample highest activity causing 80 % conversion at 550 °C. Cu on SBA-15 prepared by impregnation method and physical mixture samples show reached 80 % conversion at 650 °C. Meanwhile, catalytic activity of N_2O reduction by CH_4 on various copper on SBA-15 was shows as in Figure 5. For Cu-SBA-15 impregnated, and CuO-SBA-15 physical mixture sample, the N_2O conversion curve was shifted to the left from SBA-15 pure sample. Both catalysts sample reached 100% conversion of N_2O at 600°C. Meanwhile, Cu/SBA-15 pH adjustment sample was much higher than other samples N_2O reduction by CH_4 . Figure 4 The catalytic activity of N₂O decomposition on (a) SBA-15, (b) CuO-SBA-15 (1:30) physical mixture, (c) Cu-SBA-15 (1:30) prepared by impregnated, and (d) Cu/SBA-15(1:30) prepared by pH modification. Figure 5 The catalytic activity of N₂O reduction by CH₄ at N₂O:CH₄ (1:1) volume ratio on various copper condition of (a) Cu/SBA-15 pH adjustment, (b) Cu-SBA-15 impregnated, (c), CuO-SBA-15 physical mixture and (d) SBA-15. ### 4. CONCLUSIONS This paper has successfully demonstrated that the Cu/SBA-15 prepared by pH adjustment has highest activity compared to Cu-SBA-15 prepared by impregnation method and to physical mixture of CuO. Suggestion that N_2O reacts with CH_4 in this study is represented by $4N_2O + CH_4 \rightarrow 4N_2 + CO_2 + 2H_2O$. #### **ACKNOWLEDGMENTS** The authors would like to thank to Universiti Teknikal Melaka Malaysia for SLAB scholarship and study leave. #### REFERENCES - [1] Chmielarz, L., Kuśtrowski, P., Kruszec, M., Dziembaj, R., Cool, P., & Vansant, E. F. (2005). Nitrous oxide reduction with ammonia and methane over mesoporous silica materials modified with transition metal oxides. *Journal of Porous Materials*, 12(3), 183-191. - [2] Husin, M. H. M., Dewayanto, N., Li, J., & Nordin, M. R. (2015). The characteristics of copper containing SBA-15 prepared by impregnation and pH adjustment methods and their activities for [N. sub. 2] O decomposition. Advances in Environmental Biology, 9(6 S1), 6-15. - [3] Fierro, G., Dragone, R., & Ferraris, G. (2008). NO and N2O decomposition and their reduction by hydrocarbons over Fe–Zn manganite spinels. *Applied Catalysis B: Environmental*, 78(1-2), 183-191. - [4] Nordin, M. R., Husin, M. M. H., Li, J. L, Liew, K. Y., & Chin, S. Y. (2012). Copper containing SBA15 prepared through pH modification methods and its catalytic activity for N₂O decomposition. *Journal of* - South-Central University for Nationalities (Natural Science Edition), 31(1), 1-7. - [5] Nobukawa, T., Sugawara, K., Okumura, K., Tomishige, K., & Kunimori, K. (2007). Role of active oxygen transients in selective catalytic reduction of N2O with CH4 over Fe-zeolite catalysts. *Applied Catalysis B: Environmental*, 70(1-4), 342-352.