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ABSTRACT – Structure-borne source which transmits 

vibration power to the supporting structure especially in 

buildings plays a major role in contributing the noise 

pollution and this remains a challenging problem for 

noise treatment. In practice however, the lack of 

knowledge of phase of the excitation force from the 

structure-borne source creates variability in the input 

power. This paper discusses the quantification of the 

frequency-averaged mean and variance from the 

variability in the input power for the case of two 

excitation point forces to a beam structure. It is found 

that quantification of the frequency-average variability 

from a finite beam structure can be approached by using 

that from the corresponding infinite beam structure. 

 

1. INTRODUCTION 

Information of vibration input power from a 

structure-borne source is important as a preliminary 

control measure to allow a structural engineer to take 

preventive action by ensuring the supported structure is 

strong enough to absorb the potential vibration power. 

From this case, technique for structure-borne sound 

characterisation has been proposed [1,2]. Unfortunately, 

in order to obtain an accurate prediction of the injected 

input power, there still remains a problem due to the 

lack of some information for example the phase of the 

excitation force which creates uncertainties in the input 

power. This paper simulates the input power to a simple 

beam structure with harmonic excitation subjected to 

two forcing contact points similar to the previous work 

for plate structure [3]. This discusses the quantification 

of the frequency-averaged mean and variance of the 

variability in the input power.  

 

2. FUNDAMENTAL EQUATION 

2.1 Input Power in Finite Beam Structure 

 Figure 1 shows on a finite beam having length a, 

thickness h and width b subjected to two point forces. 

The input power can be expressed as: 
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time-harmonic forces, Y is the mobility and ϕ is the 

phase. 

 

 

In this paper, only translational force perpendicular 

to the receiver beam is taken into account. Therefore, 

the mobility matrix for two contact points is written as: 
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Figure 1 A finite beam with two point forces 

 

where Ypq is the point mobility for mode p  q or transfer 

mobility for p  q. For excitation point at x0 and x, the 

mobility at frequency ω is given by: 
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where 22
1

)/sin()/2()( axnMxn   is the n-th mass 

normalised mode with M is the total mass of the beam 

and 22/1 )/()'/( anmBn    is the natural frequency 

with the bending stiffness of beam 12/3EbhB  , 

Young’s modulus E, mass per unit length m’ and the 

damping loss factor  . The total input power in Eq. (1) 

in terms of input mobility Yp  is therefore written as: 
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where 21    is the relative phase and note that the 

transfer mobility 2112 YYYt  . For random excitation 

phase, the probability of relative phase  2/1i is 

assumed equal and constant. Thus, all the forces can 

also be assumed to have equal amplitudes. The mean 

and variance are therefore respectively given by: 
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2.2  Input Power in Infinite Beam Structure 

 The total input power for an infinite beam 

subjected to two point forces is also given the same as 

in Eq. (4). The input and transfer mobilities are given 

by: 
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where 
4 2 /' Bmk  . The mean and variance are also 

the same as in Equations (5) and (6). 

 

2.3  Averaging Over Frequency Bands  

 The input power can be averaged over the 

frequency band defined as  
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where excitation frequency lies between two 

frequencies ω1 and ω2. Thus, the frequency-averaged 

input power in Eqs. (5) and (6) can be calculated 

numerically using Eq. (9). The relative standard 

deviation is therefore given by: 
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3. RESULTS AND DISCUSSION 

 Figure 2 shows the frequency-averaged mean 

power and standard deviation which are averaged over 

all possible excitation phases and with respect to the 

non-dimensional force separation distance kL. Note that 

the mean and standard deviation are normalised by the 

input power to an infinite beam which is also subjected 

to two point forces. The mean power and standard 

deviation are seen decay close to the mean power of the 

infinite beam. 

 For the same force separation distance kL, Figure 3 

shows the relative standard deviation between the finite 

beam and infinite beams which are calculated 

numerically using Eq. (10) for two different damping 

loss factors.  It can be seen that the result of relative 

standard deviation from the infinite beam follows the 

trend of that from the finite beam. Smaller damping 

gives a better agreement. 

 

4. CONCLUSIONS 

 The variability of the input power has been 

modelled for the finite and infinite beam structures for 

two contact point forces. The quantification of the 

frequency-averaged mean and the standard deviation 

represented by the relative standard deviation shows a 

good agreement for both finite and infinite cases. It is 

found that quantification of the frequency-average 

variability from a finite receiver can thus be simply 

approached by using that from the corresponding 

infinite structure. 

 

 
Figure 2 The normalised input power subjected to two 

harmonic point forces averaged over all possible 

excitation phases: (—) actual mean and (– - –) actual 

mean+standard deviation. 

 
   (a) 

 
     (b) 

Figure 3 The relative standard deviation of input power 

averaged over frequency bands and phases: (—) finite 

beam and (– - –) infinite beam; (a) η = 0.05 and (b) η = 

0.15. 
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